Antimicrobial and Antioxidant activities of Algerian Juniperus phoenicea and Salvia officinalis Essential Oils

Authors

  • Noura Ait-Mimoune Bouira University
  • Fatima Kada Bouira University
  • Houda Drider Bouira University

DOI:

https://doi.org/10.29356/jmcs.v67i2.1921

Keywords:

Antibacterial, antifungal, antioxidant, essential oils, GC-MS

Abstract

Abstract. In this work, the chemical composition, antioxidant and antifungal activities of Juniperus phoenicea and Salvia officinalis essential oils (Eos) were evaluated. The Gas Chromatography-Mass spectrometry (GC-MS) identification of S. officinalis Eo revealed the predominance of cis-chrysanthenyl acetate (64.82 %), and α- thujone (14.7 %).  The main compounds of J. phoenicea oil were α-Pinene (64.4 %) and δ-3-Carene (7.02 %).  The antibacterial activity was evaluated using the agar well diffusion method.  The most susceptible bacteria was  Staphylococcus aureus.  The antifungal activity was tested against Aspergillus and Penicillium species by the poisoned food method. The two essential oils (Eos) exhibited an antifungal activity, with S. officinalis oil being the most potent one (8-82 % of inhibition). The antioxidant activity was characterized by the DPPH free radical scavenging method.  J. phoenicea and S.officinalis Eos had both a moderate antioxidant effect. Additionally, an antagonistic effect was observed between the Eos when used in combination.

 

Resumen. En este trabajo se evaluó la composición química, actividad antioxidante y antifúngica de los aceites esenciales de Juniperus phoenicea y Salvia officinalis (Eos). La identificación por cromatografía de gases-espectrometría de masas (GC-MS) de los aceites de S. officinalis reveló el predominio del cis-crisantenil acetato (64.82%) y α-tujona (14.7%). Los principales compuestos del aceite de J. phoenicea fueron α-pineno (64.4%) y el δ-3-careno (7,02 %). La actividad antibacteriana se evaluó mediante el método de difusión en pozo de agar. La bacteria más susceptible fue Staphylococcus aureus. La actividad antifúngica se probó contra especies de Aspergillus y Penicillium por el método de alimentos envenenados. Los dos aceites esenciales exhibieron actividad antifúngica, siendo el aceite de S. officinalis el más potente (8-82% de inhibición). La actividad antioxidante se caracterizó por el método de captación de radicales libres DPPH. J. phoenicea y S.officinalis tuvieron un efecto antioxidante moderado. Además, se observó un efecto antagónico entre los Eos cuando se usaban en combinación.

Downloads

Download data is not yet available.

Author Biographies

Noura Ait-Mimoune, Bouira University

Department of biology

Fatima Kada, Bouira University

Department of biology

Houda Drider, Bouira University

Department of biology

References

Bintsis, T. AIMS Microbiol. 2017, 3, 529-563. DOI: https://doi.org/10.3934/microbiol.2017.3.529

Alshannaq, A.; Yu, J.H. Int. J. Environ. Res. Public. Health. 2017, 14, 632. DOI: https://doi.org/10.3390/ijerph14060632

Mimica-Dukić, N.; Božin, B. Natural Product Communications. 2007, 2, 445-452. DOI: https://doi.org/10.1177/1934578X0700200416

Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens L. Front. Public Health. 2016, 4, 148. DOI: https://doi.org/0.3389/fpubh.2016.00148

Orhan, I. E.; Tumen, I., in: The Mediterranean Diet. Preedy, V.R., Watson, R.R., Ed., Academic Press, London, 2015, 639-648. DOI: https://doi.org/10.1016/B978-0-12-407849-9.00057-9

Ramos da Silva, L.R.; Ferreira, O.O.; Cruz, J.N.; de Jesus Pereira Franco, C.; Oliveira dos Anjos, M. M.; Almeida da Costa, W.; Helena de Aguiar Andrade, E.; Santana de Oliv eira, M. Evid Based Complement Alternat. Med. 2021, 2021, 18. DOI: https://doi.org/10.1155/2021/6748052

Bakkali, F., Averbeck, S., Averbeck, D.; Waomar, M. Food Chem. Toxicol. 2008, 46, 446-475. DOI: https://doi.org/10.1016/j.fct.2007.09.106

Adams, R.P. Allured Publishing Corporation, Carol Stream, USA. 2007, 1-803.

Sahin, F.; Güllüce, M.; Daferera, D.; Sökmen, A.; Sökmen, M.; Polissiou, M.; Agar, G.; Özer, H. Food Control. 2004, 15, 549-557. DOI: https://doi.org/10.1016/j.foodcont.2003.08.009

Rodea-Palomares, I.; Petre, A.L.; Boltes, K.; Leganés, F.; Perdigón-Melón, J.A.; Rosal, R.; Fernández-Piñas, F. Water Res. 2010, 44, 427-438.

Rhayour, K.; Bouchikhi, T.; Tantaoui-Elaraki, A.; Sendide, K.; Remmal, A. J. Essent. Oil Res. 2003, 15, 356-362. DOI : https://doi.org/10.1080/10412905.2003.9698611

Srivastava, S.; Singh, R.P. Indian Perfumer. 2001, 45, 49-51.

Shukla, R.; Kumar, A.; Singh, P.; Dubey, N.K. Int. J. Food Microbiol. 2009, 135, 165-170. DOI: https://doi.org/10.1016/j.ijfoodmicro.2009.08.002

Ghouti, D.; Lazouni, H.A.; Moussaoui, A.; Chabane Sari, D. Phytothérapie. 2018, 16, S74-S83. DOI: https://doi.org/10.3166/phyto-2018-0061

Medini, H.; Elaissi, A.; Larbi Khouja, M.; Piras, A.; Porcedda, S.; Falconieri, D.; Chemli, R. Nat. Prod. Res. 2011, 25, 1695-1706. DOI: https://doi.org/10.1080/14786419.2010.535168

Khalil, R.; Li, Z.G. Afr. J. Biotechnol. 2011, 10, 8397-8402. DOI: https://doi.org/10.5897/AJB10.2615

Khedher, M.R.B.; Khedher, S.B.; Chaieb, I.; Tounsi, S.; Hammami, M. EXCLI J. 2017, 16, 160-173. DOI: https://doi.org/10.17179/excli2016-832

Barra, A. Nat. Prod. Commun. 2009, 4, 1147-1154.

Sepahvand, R.; Bahram, D.; Saeed, G.; Marzieh, R.; Gholam Hassan, V.; Javad, G.Y. Asian Pac. J. Trop. Med. 2014, 7, S491-S496. DOI: https://doi.org/10.1016/S1995-7645(14)60280-7

Ruberto, G.; Baratta, M.T. Food Chem. 2000, 69, 167-174. DOI: http://dx.doi.org/10.1016/S0308-8146(99)00247-2

Bosnic, T.; Softic, D.; Grujic-Vasic, J. Acta Med. Acad. 2006, 35, 19-22.

Fouad, B.; Abderrahmane, R.; Youssef, A.; Rajae, H.; Fels, M.A. Nat. Prod. Commun. 2011, 6, 1515-1518.

Burt, S. Int. J. Food Microbiol. 2004, 94, 223-253. DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

Longbottom, C.J.; Carson, C.F.; Hammer, K.A.; Mee, B.J.; Riley, T.V. J. Antimicrob. Chemother. 2004, 54, 386-392. DOI: https://doi.org/10.1093/jac/dkh359

Mercier, B.; Prost, J.; Prost, M. Int. J. Occup. Med. Environ. Health. 2009, 22, 331-342. DOI: https://doi.org/10.2478/v10001-009-0032-5

Powers, C.N.; Osier, J.L.; McFeeters, R.L.; Powers, C.N.; Osier, J.L.; McFeeters, R.L.; Brazell, C.B.; Olsen, E.L.; Moriarity, D.M.; Satyal, P.; Setzer, W.N. Molecules. 2018, 23, 1549. DOI: https://doi.org/10.3390/molecules23071549

Abu Darwish, M.; Gonçalves, M.; Cabral, C.; Cavaleiro, C.; Salgueiro L. Acta Aliment. 2013, 42, 504-511. DOI: https://doi.org/10.1556/aalim.42.2013.4.5

Sharma, N.; Tripathi, A. Microbiol. Res. 2008, 163, 337- 344. DOI: https://doi.org/10.1016/j.micres.2006.06.009

Tolouee, M.; Alinezhad, S.; Saberi, R.; Eslamifar, A.; Zad, S.J.; Jaimand, K.; Taeb, J.; Rezaee, M.B.; Kawachi, M.; Ghahfarokhi, M.S.; Abyaneh, M.R. Int. J. Food Microbiol. 2010, 139, 127-133. DOI: https://doi.org/10.1016/j.ijfoodmicro.2010.03.032

Masyita, A.; Mustika Sari, R.; Dwi Astuti, A.; Yasir, B.; Rahma Rumata, N.; Emran, T.; Bin, F.; Nainu, F.; Simal-Gandara, J. Food Chem. 2022, 13, 10021. DOI: https://doi.org/10.1016/j.fochx.2022.100217

Downloads

Published

2023-04-01

Issue

Section

Regular Articles