Fe3O4@NH2@Oxalic Acid: A Convenient Catalyst for Synthesis of Pyrrolinone Derivatives

Authors

  • Seyran Esmaeilzadeh Islamic Azad University
  • Davood Setamdideh Islamic Azad University https://orcid.org/0000-0003-4608-9322
  • Fatemeh Ghanbary Islamic Azad University

DOI:

https://doi.org/10.29356/jmcs.v68i2.1910

Keywords:

ethylenediamine, amino-functionalization, nano-magnetite, pyrrolinones, green chemistry

Abstract

Abstract. In this context, an amine-functionalized magnetite nanoparticle was synthesized from FeCl3•6H2O and 1, 2-ethylenediamine at 110 °C in ethylene glycol within 6 hours. Then, the obtained corresponding Fe3O4@NH2 was used for the preparation of Fe3O4@NH2@oxalic acid as organoacid-magnetic nanoparticles under ultrasonic irradiation at 60 °C within 4 hours. Its chemical structure was characterized by FT-IR, XRD, SEM, VSM, and EDAX spectra. The Fe3O4@NH2@oxalic acid nanoparticles were successfully used for the synthesis of pyrrolinones derivatives in excellent yields of the products (90-95 %) within 6-10 hours at room temperature in ethanol.

 

Resumen. Se sintetizó una nanopartícula de magnetita funcionalizada con aminas a partir de FeCl3•6H2O y 1,2-etilendiamina a 110 °C en etilenglicol durante 6 horas. Posteriormente, el Fe3O4@NH2 que se obtuvo se utilizó para la preparación de nanopartículas magnéticas organoácidas de Fe3O4@NH2@ácido oxálico por irradiación ultrasónica a 60 °C durante 4 horas. Su estructura química se caracterizó por sus espectros de FT-IR, XRD, SEM, VSM, y EDAX. Las nanopartículas de Fe3O4@NH2@ácido oxálico se utilizaron existosamente para sintetizar derivados de pirrolinonas con rendimientos excelentes (90-95%), en 6-10 horas de reacción a temperatura ambiente en etanol.

Downloads

Download data is not yet available.

Author Biographies

Seyran Esmaeilzadeh, Islamic Azad University

Department of Chemistry, Mahabad Branch

Davood Setamdideh, Islamic Azad University

Department of Chemistry

Fatemeh Ghanbary, Islamic Azad University

Department of Chemistry

References

Wang, L.; Bao, J.; Wang, L.; Zhang, F.; Li, Y. Chem. Eur. J. 2012, 12, 6341- 6343. DOI: https://doi.org/10.1002/chem.200501334.

Hana, J.; Wang, L.; Wang, Y.; Dong, J.; Tang, X.; Ni, L.; Wang, L. Biochem. Eng. J. 2018, 130, 90-98. DOI: https://doi.org/10.1016/j.bej.2017.11.008.

Liua, Y.; Lib, L.; Liub, S.; Xiea, C.; Yub, S. J. Mol. Catal. A. Chem. 2016, 424, 269-275. DOI: https://doi.org/10.1016/j.molcata.2016.09.007.

Ma, M.; Zhang, Q.; Yin, D.; Dou, J.; Zhang, H.; Xu, H. Catal. Commun. 2012, 17, 168-172. DOI: https://doi.org/10.1016/j.catcom.2011.10.015.

Naeimi, H.; Ansarian, Z. J. Taiwan Inst. Chem. Eng. 2018, 85, 265-272. DOI: https://doi.org/10.1016/j.jtice.2018.01.047.

Han, Q.; Wu, X.; Cao, Y.; Zhang, H.; Zhao, Y.; Kang, X.; Zhu, H. Separations 2021, 8, 196 https://doi.org/10.3390/separations8110196.

Zhang, F.; Jin, J.; Zhong, X.; Li, S.; Niu, J.; Li, R.; Ma, J. Green Chem. 2011, 13, 1238-1243. DOI: https://doi.org/10.1039/C0GC00854K.

Xu, Y. Y.; Zhou, M.; Geng, H. J.; Hao, J. J.; Ou, Q. Q. Appl. Surf. Sci. 2012, 258, 3897-3902. DOI: https://doi.org/10.1016/j.apsusc.2011.12.054

Wang, X.; Almoallim, H. S.; Cui, Q.; Alharbi, S. A.; Yang, H. Int. J. Biol. Macromol 2021, 171, 198-207. DOI: https://doi.org/10.1016/j.ijbiomac.2020.12.037.

Sharma, K.; Dutta, S.; Sharma, S. Dalton Trans. 2015, 44, 1303-1316. DOI: https://doi.org/10.1039/C4DT03236E.

Snoussi, Y.; Bastide, S.; Abderrabba, M.; Chehimi, M. M. Ultrason. Sonochem. 2018, 41, 551-561. DOI: https://doi.org/10.1016/j.ultsonch.2017.10.021.

Zhang, Z.; Zhu, Y.; Dai, R.; Zhang, Y.; Wang, H.; Li, J. Photodiagnosis Photodyn. Ther. 2018, 23, 50-54. DOI: https://doi.org/10.1016/j.pdpdt.2018.06.002.

Gemeay, A. H.; Keshta, B. E.; El-Sharkawy, R. G.; Zaki, A. B. Environ. Sci. Pollut. Res. 2020, 27, 32341-32358. DOI: https://doi.org/10.1007/s11356-019-06530-y.

Dwoskin, P.; Teng, L.; Buxton, S. T.; Crooks, P. A. J. Pharmacol. Exp. Ther. 1999, 288, 905-911. DOI:https://jpet.aspetjournals.org/content/288/3/905.short.

Singh, P.; Dimitriou, V.; Mahajan, R. P.; Crossley, A. W. Br. J. Anaesth. 1993, 71, 685-688. DOI: https://doi.org/10.1093/bja/71.5.685.

Patsalos, P. N. Epilepsia 2005, 46, 140-148. DOI: https://doi.org/10.1111/j.1528-1167.2005.00326.x.

Lampe, J. W.; Chou, Y.; Hanna, R. G.; Di Meo, S. V.; Erhardt, P. W.; Hagedorn, A. A.; Ingebretsen, W. R.; Cantor, E. J. Med. Chem. 1993, 36, 1041-1047. DOI: https://doi.org/10.1021/jm00060a012.

Omura, S.; Fujimoto, T.; Otoguro, K.; Matsuzaki, K.; Moriguchi, R.; Tanaka, H.; Sasaki, Y. J. Antibiot. 1991, 44, 113-116. DOI: https://doi.org/10.7164/antibiotics.44.113.

Feling, R. H.; Buchanan, G. O.; Mincer, T. J.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. Angew. Chem. Int. Ed. 2003, 42, 355-357. DOI: https://doi.org/10.1002/anie.200390115.

Asami, Y.; Kakeya, H.; Onose, R.; Yoshida, A.; Matsuzaki, H.; Osada, H. Org. Lett. 2002, 4, 2845-2848. DOI: https://doi.org/10.1021/ol020104+.

Fischer, R.; Lehr, S.; Drewes, M. W.; Feucht, D.; Malsam, O.; Bojack, G.; Arnold, C.; Auler, T.; Hills, M.; Kehne, H. German Patent DE 102004053191 2006.

Franco, M. S. F.; Casagrande, G. A.; Raminelli, C.; Moura, S.; Rossatto, M.; Quina, F. H.; Pereira, C. M. P.; Flores, A. F. C.; Pizzuti, L. Synth. Commun. 2015, 45, 692-701. DOI: https://doi.org/10.1080/00397911.2014.978504.

Andana, M.; Hashimoto, S. I. Tetrahedron Lett. 1998, 39, 79-82. DOI: https://doi.org/10.1016/S0040-4039(97)10493-2.

Choi, D. R.; Lee, K. Y.; Chung, Y. S.; Joo, J. E.; Kim, Y. H.; Oh, Ch. Y.; Lee, Y. S.; Ham, W. H. Arch. Pharm. Res. 2005, 28, 151-158. DOI: https://doi.org/10.1007/bf02977706.

Burgess, L. E.; Meyers, A. I.; J. Org. Chem. 1992, 57, 1656-1662. DOI: https://doi.org/10.1021/jo00032a012.

Overman, L. E.; Remarchuk, T. P.; J. Am. Chem. Soc. 2002, 124, 12-13. DOI: https://doi.org/10.1021/ja017198n.

Singh, V.; Saxena, R.; Batra, S. J. Org. Chem. 2005, 70, 353-356. DOI: https://doi.org/10.1021/jo048411b.

Sarkar, R.; Mukhopadhyay, C. Tetrahedron Lett. 2013, 54, 3706-3711. DOI: https://doi.org/10.1016/j.tetlet.2013.05.017.

Zonouz, A. M.; Eskandari, I.; Notash, B. Synth. Commun. 2015, 45, 2115-2121. DOI: https://doi.org/10.1080/00397911.2015.1065506.

Sun, J.; Wu, Q.; Xia, E.Y.; Yan, C. G. Eur. J. Org. Chem. 2011, 2981-2986. DOI: https://doi.org/ 10.1002/ejoc.201100008.

Ahankar, H.; Ramazani, A.; Slepokura, K.; Lis, T.; Joo, S. W. Green Chem. 2016, 18, 3582-3593. DOI: https://doi.org/10.1039/c6gc00157b.

Marapala, K. S.; Venkatesh, N.; Swapna, M.; Venkateswar, P. R. Int. J. ChemTech Res. 2020, 13, 227-231. DOI: https://doi.org/10.20902/ijctr.2019.130128.

a) Pervaram, S.; Ashok, D.; Venkata Ramana Reddy, C.; Sarasija, M.; Ganesh, A. Chem. Data Collect. 2020, 29, 100508. DOI: https://doi.org/10.1016/j.cdc.2020.100508. b) Ghaffari Khaligh, N.; Mihankhah, T.; Rafie Johan, M.; Titinchi, S. J. J. Green Process Synth. 2019, 8, 373-381. DOI: https://doi.org/10.1515/gps-2019-0004. c) Ghaffari Khaligh, N.; Mihankhah, T.; Rafie Johan, M.; Synth. Commun. 2019, 49, 1334-1342. DOI: https://doi.org/10.1080/00397911.2019.1601225.

a) Ghorbani-Vaghei, R.; Sarmast, N.; Mahmoodi, J. Appl. Organomet. Chem. 2017, 31, e3681. DOI: https://doi.org/10.1002/aoc.3681. b) Esmaeilzadeh, S.; Setamdideh, D. J. Serb. Chem. Soc. 2021, 86, 1039-1056. DOI: https://doi.org/10.2298/JSC210521059E.

Hamdi Mohamadabad, P.; Setamdideh, D. Org. Prep. Proced. Int. 2023, 55, 265-275. DOI: https://doi.org/10.1080/00304948.2022.2141044.

a) Kim, H. K.; Park, J. W.; J. Environ. Sci. Health. A. 2019, 54, 648-656. DOI: https://doi.org/10.1080/10934529.2019.1579535. b) Burakevich, J. V.; Lore, A. M.; Volpp, G. P. J. Org. Chem. 1971, 36, 1-4. DOI: https://doi.org/10.1021/jo00800a001.

Chan, C. C. P.; Gallard, H.; Majewski, P. J. Nanopart. Res. 2012, 14, 828. DOI: https://doi.org/10.1007/s11051-012-0828-2.

Ebrahimi-Tazangi, F.; Hekmatara, S. H.; Yazdi, J. S. J. Alloys Compd. 2019, 809, 151779. DOI: https://doi.org/10.1016/j.jallcom.2019.151779.

Zhang, C. L.; Cheng, H. D.; Ren, S. Y.; Zhang, W. P.; Chen, Z.; Wang, Y.; MA, J. H.; Zhang, C. S.; Guo, Z. Y. IOP Conf. Ser.: Earth Environ. Sci. 2018, 199, 052042. DOI: https://doi.org/10.1088/1755-1315/199/5/052042.

Fan, G.; Rena, Y.; Jiangb, W.; Wang, C.; Xub, B.; Liu, F. Catal. Commun. 2014, 52, 22. DOI: https://doi.org/10.1016/j.catcom.2014.04.006.

Gao, J.; He, Y.; Zhao, X.; Ran, X.; Wuc, Y.; Su, Y.; Dai, J. J. Colloid Interface. Sci. 2016, 481, 220-228. DOI: https://doi.org/10.1016/j.jcis.2016.07.057.

Chu, C.; Lu, C.; Yuan, J.; Xing, C. Sci. Nutr. 2020, 8, 3673-3681. DOI: https://doi.org/10.1002/fsn3.1651.

Guan, N.; Xu, J.; Wang, L.; Sun, D. Colloid Surf. A-Phsicochem. Eng. Asp. 2009, 346, 221-228. DOI: https://doi.org/10.1016/j.colsurfa.2009.06.022.

He, X.; Yang, W.; Li, S.; Liu, Y.; Hu, B.; Wang, T.; Hou, X. Microchim. Acta. 2018, 185, 125. DOI: https://doi.org/10.1007/s00604-018-2672-2.

Jafarnejad, M.; Daghighi Asli, M.; Afshar Taromi, F.; Manoochehri, M. Int. J. Biol. Macromol. 2020, 148, 201-217. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.017.

Lin, S.; Hua, X.; Yang, Y.; Liu, L.; Lin, K. Water Sci. Technol. 2017, 76, 452-458. DOI: https://doi.org/10.2166/wst.2017.225.

Das, M.; Dhak, P.; Gupta, S.; Mishra, D.; Maiti, T. K.; Basak, A.; Pramanik, P. Nanotechnology 2010, 21, 125103. DOI: https://doi.org/10.1088/0957-4484/21/12/125103.

Baghani, A. N.; Mahvi, A. H.; Gholami, M.; Delikhoon, N. R. M. J. Environ. Health Sci. Eng. 2016, 14, 11. DOI: https://doi.org/10.1186/s40201-016-0252-0.

Pazouki, M.; Zabihi, M.; Shayegan, J.; Fatehi, M. H. J. Chem. Eng. 2018, 35, 671-683. DOI: https://doi.org/10.1007/s11814-017-0293-9.

Han, L.; Li, Q.; Chen, S.; Xie, W.; Bao, W.; Chang, L.; Wang, J. Sci. Rep. 2017, 7, 7448. DOI: https://doi.org/10.1038/s41598-017-07802-8.

Li, Y.; Xie, Q.; Hu, Q.; Li, C.; Huang, Z.; Yang, X.; Guo, H. Sci. Rep. 2016, 6, 30651. DOI:https://doi.org/10.1038/srep30651.

Xiong, S.; Wang, M.; Cai, D.; Li, Y.; Gu, N.; Wu, Z.; Anal. Lett. 2013, 46, 912-922. DOI: https://doi.org/10.1080/00032719.2012.747094.

Tang, Z.; Li, F. J. Comput. Theor. Nanosci. 2016, 13, 772-776. DOI: https://doi.org/ 10.1166/jctn.2016.4873.

Cornell, R. M.; Schwertmann, U. U. in: The Iron Oxides: Structure Properties, Reactions, Occurrences and Uses, 2nd ed.; Completely Revised and Extended Edition; Wiley-VCH:Weinheim, Germany, 2003.

Loh, K. S.; Lee, Y. H.; Musa, A.; Salmah, A. A.; Zamri, I. Sensors. 2008, 8, 5775. DOI: https://doi.org/10.3390/s8095775.

Dutta, A.; Rohman, M. A.; Nongrum, R.; Thongni, A.; Mitra, S.; Nongkhlaw, R. New J. Chem. 2021, 45, 8136 -8148. DOI: https://doi.org/10.1039/D1NJ00343G.

Downloads

Additional Files

Published

2024-02-01