Fe3O4@NH2@Oxalic Acid: A Convenient Catalyst for Synthesis of Pyrrolinone Derivatives
DOI:
https://doi.org/10.29356/jmcs.v68i2.1910Keywords:
ethylenediamine, amino-functionalization, nano-magnetite, pyrrolinones, green chemistryAbstract
Abstract. In this context, an amine-functionalized magnetite nanoparticle was synthesized from FeCl3•6H2O and 1, 2-ethylenediamine at 110 °C in ethylene glycol within 6 hours. Then, the obtained corresponding Fe3O4@NH2 was used for the preparation of Fe3O4@NH2@oxalic acid as organoacid-magnetic nanoparticles under ultrasonic irradiation at 60 °C within 4 hours. Its chemical structure was characterized by FT-IR, XRD, SEM, VSM, and EDAX spectra. The Fe3O4@NH2@oxalic acid nanoparticles were successfully used for the synthesis of pyrrolinones derivatives in excellent yields of the products (90-95 %) within 6-10 hours at room temperature in ethanol.
Resumen. Se sintetizó una nanopartícula de magnetita funcionalizada con aminas a partir de FeCl3•6H2O y 1,2-etilendiamina a 110 °C en etilenglicol durante 6 horas. Posteriormente, el Fe3O4@NH2 que se obtuvo se utilizó para la preparación de nanopartículas magnéticas organoácidas de Fe3O4@NH2@ácido oxálico por irradiación ultrasónica a 60 °C durante 4 horas. Su estructura química se caracterizó por sus espectros de FT-IR, XRD, SEM, VSM, y EDAX. Las nanopartículas de Fe3O4@NH2@ácido oxálico se utilizaron existosamente para sintetizar derivados de pirrolinonas con rendimientos excelentes (90-95%), en 6-10 horas de reacción a temperatura ambiente en etanol.
Downloads
References
Wang, L.; Bao, J.; Wang, L.; Zhang, F.; Li, Y. Chem. Eur. J. 2012, 12, 6341- 6343. DOI: https://doi.org/10.1002/chem.200501334.
Hana, J.; Wang, L.; Wang, Y.; Dong, J.; Tang, X.; Ni, L.; Wang, L. Biochem. Eng. J. 2018, 130, 90-98. DOI: https://doi.org/10.1016/j.bej.2017.11.008.
Liua, Y.; Lib, L.; Liub, S.; Xiea, C.; Yub, S. J. Mol. Catal. A. Chem. 2016, 424, 269-275. DOI: https://doi.org/10.1016/j.molcata.2016.09.007.
Ma, M.; Zhang, Q.; Yin, D.; Dou, J.; Zhang, H.; Xu, H. Catal. Commun. 2012, 17, 168-172. DOI: https://doi.org/10.1016/j.catcom.2011.10.015.
Naeimi, H.; Ansarian, Z. J. Taiwan Inst. Chem. Eng. 2018, 85, 265-272. DOI: https://doi.org/10.1016/j.jtice.2018.01.047.
Han, Q.; Wu, X.; Cao, Y.; Zhang, H.; Zhao, Y.; Kang, X.; Zhu, H. Separations 2021, 8, 196 https://doi.org/10.3390/separations8110196.
Zhang, F.; Jin, J.; Zhong, X.; Li, S.; Niu, J.; Li, R.; Ma, J. Green Chem. 2011, 13, 1238-1243. DOI: https://doi.org/10.1039/C0GC00854K.
Xu, Y. Y.; Zhou, M.; Geng, H. J.; Hao, J. J.; Ou, Q. Q. Appl. Surf. Sci. 2012, 258, 3897-3902. DOI: https://doi.org/10.1016/j.apsusc.2011.12.054
Wang, X.; Almoallim, H. S.; Cui, Q.; Alharbi, S. A.; Yang, H. Int. J. Biol. Macromol 2021, 171, 198-207. DOI: https://doi.org/10.1016/j.ijbiomac.2020.12.037.
Sharma, K.; Dutta, S.; Sharma, S. Dalton Trans. 2015, 44, 1303-1316. DOI: https://doi.org/10.1039/C4DT03236E.
Snoussi, Y.; Bastide, S.; Abderrabba, M.; Chehimi, M. M. Ultrason. Sonochem. 2018, 41, 551-561. DOI: https://doi.org/10.1016/j.ultsonch.2017.10.021.
Zhang, Z.; Zhu, Y.; Dai, R.; Zhang, Y.; Wang, H.; Li, J. Photodiagnosis Photodyn. Ther. 2018, 23, 50-54. DOI: https://doi.org/10.1016/j.pdpdt.2018.06.002.
Gemeay, A. H.; Keshta, B. E.; El-Sharkawy, R. G.; Zaki, A. B. Environ. Sci. Pollut. Res. 2020, 27, 32341-32358. DOI: https://doi.org/10.1007/s11356-019-06530-y.
Dwoskin, P.; Teng, L.; Buxton, S. T.; Crooks, P. A. J. Pharmacol. Exp. Ther. 1999, 288, 905-911. DOI:https://jpet.aspetjournals.org/content/288/3/905.short.
Singh, P.; Dimitriou, V.; Mahajan, R. P.; Crossley, A. W. Br. J. Anaesth. 1993, 71, 685-688. DOI: https://doi.org/10.1093/bja/71.5.685.
Patsalos, P. N. Epilepsia 2005, 46, 140-148. DOI: https://doi.org/10.1111/j.1528-1167.2005.00326.x.
Lampe, J. W.; Chou, Y.; Hanna, R. G.; Di Meo, S. V.; Erhardt, P. W.; Hagedorn, A. A.; Ingebretsen, W. R.; Cantor, E. J. Med. Chem. 1993, 36, 1041-1047. DOI: https://doi.org/10.1021/jm00060a012.
Omura, S.; Fujimoto, T.; Otoguro, K.; Matsuzaki, K.; Moriguchi, R.; Tanaka, H.; Sasaki, Y. J. Antibiot. 1991, 44, 113-116. DOI: https://doi.org/10.7164/antibiotics.44.113.
Feling, R. H.; Buchanan, G. O.; Mincer, T. J.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. Angew. Chem. Int. Ed. 2003, 42, 355-357. DOI: https://doi.org/10.1002/anie.200390115.
Asami, Y.; Kakeya, H.; Onose, R.; Yoshida, A.; Matsuzaki, H.; Osada, H. Org. Lett. 2002, 4, 2845-2848. DOI: https://doi.org/10.1021/ol020104+.
Fischer, R.; Lehr, S.; Drewes, M. W.; Feucht, D.; Malsam, O.; Bojack, G.; Arnold, C.; Auler, T.; Hills, M.; Kehne, H. German Patent DE 102004053191 2006.
Franco, M. S. F.; Casagrande, G. A.; Raminelli, C.; Moura, S.; Rossatto, M.; Quina, F. H.; Pereira, C. M. P.; Flores, A. F. C.; Pizzuti, L. Synth. Commun. 2015, 45, 692-701. DOI: https://doi.org/10.1080/00397911.2014.978504.
Andana, M.; Hashimoto, S. I. Tetrahedron Lett. 1998, 39, 79-82. DOI: https://doi.org/10.1016/S0040-4039(97)10493-2.
Choi, D. R.; Lee, K. Y.; Chung, Y. S.; Joo, J. E.; Kim, Y. H.; Oh, Ch. Y.; Lee, Y. S.; Ham, W. H. Arch. Pharm. Res. 2005, 28, 151-158. DOI: https://doi.org/10.1007/bf02977706.
Burgess, L. E.; Meyers, A. I.; J. Org. Chem. 1992, 57, 1656-1662. DOI: https://doi.org/10.1021/jo00032a012.
Overman, L. E.; Remarchuk, T. P.; J. Am. Chem. Soc. 2002, 124, 12-13. DOI: https://doi.org/10.1021/ja017198n.
Singh, V.; Saxena, R.; Batra, S. J. Org. Chem. 2005, 70, 353-356. DOI: https://doi.org/10.1021/jo048411b.
Sarkar, R.; Mukhopadhyay, C. Tetrahedron Lett. 2013, 54, 3706-3711. DOI: https://doi.org/10.1016/j.tetlet.2013.05.017.
Zonouz, A. M.; Eskandari, I.; Notash, B. Synth. Commun. 2015, 45, 2115-2121. DOI: https://doi.org/10.1080/00397911.2015.1065506.
Sun, J.; Wu, Q.; Xia, E.Y.; Yan, C. G. Eur. J. Org. Chem. 2011, 2981-2986. DOI: https://doi.org/ 10.1002/ejoc.201100008.
Ahankar, H.; Ramazani, A.; Slepokura, K.; Lis, T.; Joo, S. W. Green Chem. 2016, 18, 3582-3593. DOI: https://doi.org/10.1039/c6gc00157b.
Marapala, K. S.; Venkatesh, N.; Swapna, M.; Venkateswar, P. R. Int. J. ChemTech Res. 2020, 13, 227-231. DOI: https://doi.org/10.20902/ijctr.2019.130128.
a) Pervaram, S.; Ashok, D.; Venkata Ramana Reddy, C.; Sarasija, M.; Ganesh, A. Chem. Data Collect. 2020, 29, 100508. DOI: https://doi.org/10.1016/j.cdc.2020.100508. b) Ghaffari Khaligh, N.; Mihankhah, T.; Rafie Johan, M.; Titinchi, S. J. J. Green Process Synth. 2019, 8, 373-381. DOI: https://doi.org/10.1515/gps-2019-0004. c) Ghaffari Khaligh, N.; Mihankhah, T.; Rafie Johan, M.; Synth. Commun. 2019, 49, 1334-1342. DOI: https://doi.org/10.1080/00397911.2019.1601225.
a) Ghorbani-Vaghei, R.; Sarmast, N.; Mahmoodi, J. Appl. Organomet. Chem. 2017, 31, e3681. DOI: https://doi.org/10.1002/aoc.3681. b) Esmaeilzadeh, S.; Setamdideh, D. J. Serb. Chem. Soc. 2021, 86, 1039-1056. DOI: https://doi.org/10.2298/JSC210521059E.
Hamdi Mohamadabad, P.; Setamdideh, D. Org. Prep. Proced. Int. 2023, 55, 265-275. DOI: https://doi.org/10.1080/00304948.2022.2141044.
a) Kim, H. K.; Park, J. W.; J. Environ. Sci. Health. A. 2019, 54, 648-656. DOI: https://doi.org/10.1080/10934529.2019.1579535. b) Burakevich, J. V.; Lore, A. M.; Volpp, G. P. J. Org. Chem. 1971, 36, 1-4. DOI: https://doi.org/10.1021/jo00800a001.
Chan, C. C. P.; Gallard, H.; Majewski, P. J. Nanopart. Res. 2012, 14, 828. DOI: https://doi.org/10.1007/s11051-012-0828-2.
Ebrahimi-Tazangi, F.; Hekmatara, S. H.; Yazdi, J. S. J. Alloys Compd. 2019, 809, 151779. DOI: https://doi.org/10.1016/j.jallcom.2019.151779.
Zhang, C. L.; Cheng, H. D.; Ren, S. Y.; Zhang, W. P.; Chen, Z.; Wang, Y.; MA, J. H.; Zhang, C. S.; Guo, Z. Y. IOP Conf. Ser.: Earth Environ. Sci. 2018, 199, 052042. DOI: https://doi.org/10.1088/1755-1315/199/5/052042.
Fan, G.; Rena, Y.; Jiangb, W.; Wang, C.; Xub, B.; Liu, F. Catal. Commun. 2014, 52, 22. DOI: https://doi.org/10.1016/j.catcom.2014.04.006.
Gao, J.; He, Y.; Zhao, X.; Ran, X.; Wuc, Y.; Su, Y.; Dai, J. J. Colloid Interface. Sci. 2016, 481, 220-228. DOI: https://doi.org/10.1016/j.jcis.2016.07.057.
Chu, C.; Lu, C.; Yuan, J.; Xing, C. Sci. Nutr. 2020, 8, 3673-3681. DOI: https://doi.org/10.1002/fsn3.1651.
Guan, N.; Xu, J.; Wang, L.; Sun, D. Colloid Surf. A-Phsicochem. Eng. Asp. 2009, 346, 221-228. DOI: https://doi.org/10.1016/j.colsurfa.2009.06.022.
He, X.; Yang, W.; Li, S.; Liu, Y.; Hu, B.; Wang, T.; Hou, X. Microchim. Acta. 2018, 185, 125. DOI: https://doi.org/10.1007/s00604-018-2672-2.
Jafarnejad, M.; Daghighi Asli, M.; Afshar Taromi, F.; Manoochehri, M. Int. J. Biol. Macromol. 2020, 148, 201-217. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.017.
Lin, S.; Hua, X.; Yang, Y.; Liu, L.; Lin, K. Water Sci. Technol. 2017, 76, 452-458. DOI: https://doi.org/10.2166/wst.2017.225.
Das, M.; Dhak, P.; Gupta, S.; Mishra, D.; Maiti, T. K.; Basak, A.; Pramanik, P. Nanotechnology 2010, 21, 125103. DOI: https://doi.org/10.1088/0957-4484/21/12/125103.
Baghani, A. N.; Mahvi, A. H.; Gholami, M.; Delikhoon, N. R. M. J. Environ. Health Sci. Eng. 2016, 14, 11. DOI: https://doi.org/10.1186/s40201-016-0252-0.
Pazouki, M.; Zabihi, M.; Shayegan, J.; Fatehi, M. H. J. Chem. Eng. 2018, 35, 671-683. DOI: https://doi.org/10.1007/s11814-017-0293-9.
Han, L.; Li, Q.; Chen, S.; Xie, W.; Bao, W.; Chang, L.; Wang, J. Sci. Rep. 2017, 7, 7448. DOI: https://doi.org/10.1038/s41598-017-07802-8.
Li, Y.; Xie, Q.; Hu, Q.; Li, C.; Huang, Z.; Yang, X.; Guo, H. Sci. Rep. 2016, 6, 30651. DOI:https://doi.org/10.1038/srep30651.
Xiong, S.; Wang, M.; Cai, D.; Li, Y.; Gu, N.; Wu, Z.; Anal. Lett. 2013, 46, 912-922. DOI: https://doi.org/10.1080/00032719.2012.747094.
Tang, Z.; Li, F. J. Comput. Theor. Nanosci. 2016, 13, 772-776. DOI: https://doi.org/ 10.1166/jctn.2016.4873.
Cornell, R. M.; Schwertmann, U. U. in: The Iron Oxides: Structure Properties, Reactions, Occurrences and Uses, 2nd ed.; Completely Revised and Extended Edition; Wiley-VCH:Weinheim, Germany, 2003.
Loh, K. S.; Lee, Y. H.; Musa, A.; Salmah, A. A.; Zamri, I. Sensors. 2008, 8, 5775. DOI: https://doi.org/10.3390/s8095775.
Dutta, A.; Rohman, M. A.; Nongrum, R.; Thongni, A.; Mitra, S.; Nongkhlaw, R. New J. Chem. 2021, 45, 8136 -8148. DOI: https://doi.org/10.1039/D1NJ00343G.
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2024 Seyran Esmaeilzadeh, Davood Setamdideh, Fatemeh Ghanbary
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.