In vitro Activity of Picroside I in Type 2 Diabetes Based on Oxidative Stress

Authors

  • Jingya Liu Xihua University https://orcid.org/0000-0003-4532-5135
  • Yinqiu Zheng Xihua University
  • Shuang Dai Xihua University
  • Li Li Xihua University
  • Wei Wu Xihua University
  • Rong Gou Xihua University
  • Deyuan Wang Xihua University
  • Shiyu Long Xihua University
  • Meihua Huang Xihua University
  • Zhihong Xu Xihua University https://orcid.org/0000-0002-9103-3830

DOI:

https://doi.org/10.29356/jmcs.v67i2.1899

Keywords:

Picroside I, oxidative stress, insulin resistance (IR), glucose consumption, HepG2 cells

Abstract

Abstract. The primary factor leading to insulin resistance (IR) and type 2 diabetes mellitus (T2DM) is oxidative stress. Despite its liver-protecting, enzyme-lowering, immune-regulating, and antiviral effects, the impact of picroside I on oxidative stress, glucose utilization, and IR has not been investigated yet. In vitro studies were conducted to evaluate the antioxidant properties of different concentrations of picroside I. The results showed that picroside I effectively suppresses α-glucosidase and α-amylase with IC50 values of 109.75 μg/mL and 160.71 μg/mL in the range of 50-500 μg/mL. Additionally, when IR-HepG2 cells were treated with 80 μg/mL of picroside I, it was found to have little effect on cell viability, increase glucose consumption, decrease the levels of the free radical metabolite malonic dialdehyde, and increase superoxide dismutase activity. These findings indicate that picroside I has the potential to regulate oxidative stress in IR-HepG2 cells, potentially improving IR and exhibiting anti-T2DM activity.

Resumen. El factor principal que conduce a la resistencia a la insulina (IR) y a la diabetes mellitus tipo 2 (T2DM) es el estrés oxidativo. A pesar de sus efectos protectores del hígado, reductores de enzimas, inmunorreguladores y antivirales, aún no se ha investigado el impacto del picrósido I sobre el estrés oxidativo, la utilización de glucosa y la IR. Se realizaron estudios in vitro para evaluar las propiedades antioxidantes de diferentes concentraciones de picrósido I. Los resultados mostraron que el picrósido I suprime eficazmente la α-glucosidasa y la α-amilasa con valores IC50 de 109,75 μg/mL y 160,71 μg/mL en el rango de 50 -500 microgramos/ml. Además, cuando las células IR-HepG2 se trataron con 80 μg/mL de picrósido I, se encontró que tenía poco efecto sobre la viabilidad celular, aumentaba el consumo de glucosa, disminuía los niveles del metabolito de radicales libres dialdehído malónico y aumentaba la actividad de la superóxido dismutasa. Estos hallazgos indican que el picrósido I tiene el potencial de regular el estrés oxidativo en las células IR-HepG2, mejorando potencialmente la IR y exhibiendo actividad anti-T2DM.

 

Downloads

Download data is not yet available.

Author Biographies

Jingya Liu, Xihua University

School of Science

Yinqiu Zheng, Xihua University

School of Science

Shuang Dai, Xihua University

School of Science

Li Li , Xihua University

School of Science

Wei Wu, Xihua University

School of Science

Rong Gou, Xihua University

School of Science

Deyuan Wang, Xihua University

School of Science

Shiyu Long, Xihua University

School of Science

Meihua Huang, Xihua University

School of Science

Zhihong Xu, Xihua University

School of Science

References

Biessels, G. J.; Gispen, W. H. Neurobiol. Aging. 2005, 26 Suppl 1, 36-41. DOI: http://dx.doi.org/10.1016/j.neurobiolaging.2005.08.015

Whiting, D. R.; Guariguata, L.; Weil, C.; Shaw, J. Diabetes Res. Clin. Prac. 2011, 94, 311-321 DOI: http://dx.doi.org/10.1016/j.diabres.2011.10.029

Fu, Z.; Gilbert, E. R.; Liu, D. Curr. Diabetes Rev. 2013, 9, 25-53.

Brannmark, C.; Nyman, E.; Fagerholm, S.; Bergenholm, L.; Ekstrand, E.; Cedersund, G.; Stralfors, P. J. Biol. Chem. 2013, 288, 9867-9880. DOI: http://dx.doi.org/10.1074/jbc.M112.432062

Tangvarasittichai, S. World J. Diabetes. 2015, 6, 456-80. DOI: http://dx.doi.org/10.4239/wjd.v6.i3.456

Farrugia, G.; Balzan, R. Fron. Oncol. 2012, 2, 64-64. DOI: http://dx.doi.org/10.3389/fonc.2012.00064

Cossarizza, A.; Ferraresi, R.; Troiano, L.; Roat, E.; Gibellini, L.; Bertoncelli, L.; Nasi, M.; Pinti, M. Nat. Protoc. 2009, 4, 1790-1797. DOI: http://dx.doi.org/10.1038/nprot.2009.189

Siddique, Y. H.; Ara, G.; Afzal, M. Dose-Response. 2012, 10, 1-10. DOI: http://dx.doi.org/10.2203/dose-response.10-002.Siddique

Fernandes, A. C. F.; Melo, J. B.; Genova, V. M.; Santana, A. L.; Macedo, G. Recent Pat. Food, Nutr. Agric. 2022, 13, 3-16. DOI: http://dx.doi.org/10.2174/2212798412666210528130001

Imam, M. U.; Musa, S. N. A.; Azmi, N. H.; Ismail, M. Int. J. Mol. Sci. 2012, 13, 12952-12969. DOI: http://dx.doi.org/10.3390/ijms131012952

Sung, M.; Park, S. S.; Kim, S.; Han, C.; Hur, J. Food Sci. Biotechnol. 2014, 23, 1615-1621. DOI: http://dx.doi.org/10.1007/s10068-014-0220-3

Balkan, B. M.; Kismali, G.; Alpay, M.; Sayiner, S.; Turan, D.; Balkan, A. B.; Salmanoglu, B.; Karagul, H.; Sel, T. Kafkas Universitesi Veteriner Fakultesi Dergisi. 2016, 22, 865-869. DOI: http://dx.doi.org/10.9775/kvfd.2016.15499

Chen, W.; Shaw, L.; Chang, P.; Tung, S.; Chang, T.; Shen, C.; Hsieh, Y.; Wei, K. Experimental and Therapeutic Medicines. 2016, 11, 1231-1238. DOI: http://dx.doi.org/10.3892/etm.2016.3077

Sriset, Y.; Chatuphonprasert, W.; Jarukamjorn, K. Tropical J. Pharm. Res. 2019, 18, 1001-1007. DOI: http://dx.doi.org/10.4314/tjpr.v18i5.13

Lee, H.; Lim, Y. J. Nutr. Biochem. 2018, 57, 77-85. DOI: http://dx.doi.org/10.1016/j.jnutbio.2018.03.016

Polce, S. A.; Burke, C.; Franca, L. M.; Kramer, B.; de Andrade Paes, A. M.; Carrillo-Sepulveda, M. A. Nutrients. 2018, 10. DOI: http://dx.doi.org/10.3390/nu10050531

Balabolkin, M. L.; Klebanova, E. M. Terapevticheskii. 2003, 75, 72-77.

Taylor, R. Journal of the Royal College of Physicians of Edinburgh. 2017, 47, 168-171. DOI: http://dx.doi.org/10.4997/JRCPE.2017.216

Li, C.; He, J.; Zhou, X.; Xu, X. China Journal of Chinese Materia Medica. 2017, 42, 2254-2260. DOI: http://dx.doi.org/10.19540/j.cnki.cjcmm.20170307.014

Schmidt, M. I.; Bracco, P. A.; Duncan, B. B. Lancet Diabetes Endocrinol. 2019, 7, 424. DOI: http://dx.doi.org/10.1016/S2213-8587(19)30148-2

Jamal, P.; Barkat, A. A.; Amid, A. Afr. J. Biotechnol. 2011, 10, 18788-18794. DOI: http://dx.doi.org/10.5897/AJB11.2754

Han, H.; Li, Z.; Gao, Z.; Yin, X.; Dong, P.; Yang, B.; Kuang, H. Nat. Prod. Res. 2019, 33, 2845-2850. DOI: http://dx.doi.org/10.1080/14786419.2018.1508143

Chen, W.; Shen, Y.; Su, H.; Zheng, X. Chem.-Biol. Interact. 2014, 219, 83-89. DOI: http://dx.doi.org/10.1016/j.cbi.2014.05.010

Floegel, A.; Kim, D.; Chung, S.; Koo, S. I.; Chun, O. K. J. Food Compos. Anal. 2011, 24, 1043-1048. DOI: http://dx.doi.org/10.1016/j.jfca.2011.01.008

Chi, C.; Hu, F.; Wang, B.; Li, T.; Ding, G. J. Funct. Foods. 2015, 15, 301-313 DOI: http://dx.doi.org/10.1016/j.jff.2015.03.045

Vijayalakshmi, M.; Ruckmani, K. Bangladesh Journal of Pharmacology. 2016, 11, 570-572. DOI: http://dx.doi.org/10.3329/bjp.v11i3.27663

Yilmazer-Musa, M.; Griffith, A. M.; Michels, A. J.; Schneider, E.; Frei, B. J. Agric. Food Chem. 2012, 60, 8924-8929. DOI: http://dx.doi.org/10.1021/jf301147n

Kazeem, M. I.; Adamson, J. O.; Ogunwande, I. A. BioMed Research International. 2013, 2013. DOI: http://dx.doi.org/10.1155/2013/527570

Downloads

Published

2023-04-01

Issue

Section

Regular Articles

Similar Articles

You may also start an advanced similarity search for this article.