Phytochemistry, Mineral Estimation, Nutritional, and the In Vitro Anti-Sickling Potentials of Oil Extracted from the Seeds of Mucuna Flagellipes

Authors

  • Emmanuel U. Ejiofor Clifford University Owerrinta https://orcid.org/0000-0001-8919-0477
  • Alwell C. Ako Clifford University https://orcid.org/0000-0001-9862-6850
  • Maxwell T. Kube Usmanu Danfodiyo University
  • Ernest C. Agwamba College of Science and Technology
  • Chinweuba Alala Clifford University
  • Kelvin Maduabuchi Clifford University
  • Maureen Ejiofor Michael Okpara University of Agriculture

DOI:

https://doi.org/10.29356/jmcs.v68i2.1898

Keywords:

Anti-sickling, Mucuna flagellipes, Zinc, Vitamins, unsaturated fats, Polymerization

Abstract

Abstract. Sickle cell disease is an inherited blood disorder indicative of red blood cells becoming sickle-shaped. The study investigated the in vitro anti-sickling potentials of the seed oil of M. flagellipes. The phytochemistry (fatty acids, vitamins, and minerals) was also determined using standard protocols. Finally, nutritional calculations on the oil were performed to determine its suitability for nutritional purposes. The result showed high zinc content (780 ± 2.50 µg/ 100 mg), while low iron content was observed (170 ± 1.30 µg/ 100 mg). Vitamin analysis showed the presence of vitamins A, E and K with values of 220 ± 1.60, 370 ± 2.20, and 197 ± 0.23 µg/100 mg respectively.  The fatty acid profile revealed oleic (31.87 %) and linoleic (18.30 %) fatty acids as the major unsaturated fat in the oil, while palmitic fatty acid (5.91 %) was the major saturated fatty acid. Nutritional calculations showed high PUFA/SFA (2.07), MUFA/SFA (3.62), and UI (68.47). However, the index of thrombogenicity (0.07) and atherogenicity (0.11) was low in the seed oil. Finally, the in vitro anti-sickling potentials of the seed oil showed the oil inhibited and reversed sickling in a dose-dependent manner. Hbs polymerization was also inhibited and Fe2+/Fe3+ was upregulated following treatment with the seed oil. Collectively, the oil showed good anti-sickling potentials, which can be labelled to the presence of zinc, vitamins and unsaturated fat. The nutritional calculations suggest that the seed oil is cardio-friendly and does not pose any nutritional threat

 

Resumen. La anemia falciforme es un trastorno hereditario de la sangre que indica que los glóbulos rojos adquieren forma de hoz. Este estudio investigó los potenciales de evitar la malformación de células falciformes (anti-sickling) in vitro por el aceite de la semilla de Macuna. flagellipes. La fitoquímica (ácidos grasos, vitaminas y minerales) se determinó utilizando protocolos estándar. Finalmente, se realizaron cálculos nutricionales del aceite para determinar su idoneidad para fines nutricionales. El resultado mostró alto contenido de zinc (780 2,50 µg/100mg), mientras que se observó bajo contenido de hierro (170 1,30 µg/100mg). El análisis vitamínico mostró presencia de vitamina A, E y K con valores de 220 ± 1.60, 370 ± 2.20 y 197 ± 0.23 µg/100 mg, respectivamente. El perfil de ácidos grasos reveló ácidos oleicos (31.87 %) y linoleico (18.30 %) como las principales grasas insaturadas del aceite, mientras que el ácido palmítico (5.91 %) fue el principal ácido graso saturado. Los cálculos nutricionales mostraron un alto PUFA/SFA (2.07), MUFA/SFA (3.62), UI (68.47). Sin embargo, el índice de trombogenicidad (0.07) y aterogénesis (0.11) fue bajo en el aceite de semilla. Por último, los potenciales para evitar la malformación de células falciformes in vitro por aceite de semilla mostraron que el aceite inhibió y revirtió la enfermedad de una manera dependiente de la dosis. La polimerización de Hbs también fue inhibida y Fe2+/Fe3+ fue sobreregulada después del tratamiento con el aceite de la semilla. Colectivamente, el aceite mostró un buen potencial evitar la malformación de células falciformes, que puede ser atribuido a la presencia de zinc, vitaminas y grasa insaturada. Los cálculos nutricionales sugieren que el aceite de semilla es cardio-amigable y no representa ninguna amenaza nutricional.

Downloads

Download data is not yet available.

Author Biographies

Emmanuel U. Ejiofor, Clifford University Owerrinta

Department of Chemical Sciences, Faculty of Science

Alwell C. Ako, Clifford University

Department of Chemical Sciences, Faculty of Science

Maxwell T. Kube, Usmanu Danfodiyo University

Department of Biochemistry

Ernest C. Agwamba, College of Science and Technology

Department of Chemistry

Chinweuba Alala, Clifford University

Department of Chemical Sciences, Faculty of Science

Kelvin Maduabuchi, Clifford University

Department of Chemical Sciences, Faculty of Science

Maureen Ejiofor, Michael Okpara University of Agriculture

Department of Biochemistry, College of Natural Sciences

References

Strouse, J. Handbook of Clin. Neurol. 2016, 138, 311-324.

Yenon, A. A.; Sangare, B.; Ndraman, D.; Sawadogo, D.; Yapi, H. F.; Nguessan, J. D.; Djaman, A. J. The Pharma. Chem. J. 2016, 3, 351-358.

Mpiana, P. T.; Mudogu, V.; Tshibagu, D. S. T.; Kitwa, E. K.; Kanagila, A. B.; Lumbu, J. B. S.; Ngbolua, K. N.; Atibu, E. K.; Kakuli, M. K. J. Ethnopharmacol. 2008, 120, I413-418.

Mohammed, R. H.; Sulaiman, S. K. Int. J. Appl. Sci. Res. 2021, 4, 1-12.

Okpala, I.; Ibegbulam, O.; Duru, A.; Ocheni, S.; Emodi, I.; Ikefuna, A.; Umar, G.; Asinobi, I.; Madu, A.; Okoye, A.; Nwagha, T.; Oguonu, U.; Uamai, I.; Agwu, O.; Nonyelu, C.; Anike, U.; Agu, K.; Anigbo, C.; Chukwura, A.; Ugwu, O.; Herrada, S. Acta Pathologica, Microbiologica, et Immunologica Scandinavica 2011, 119, 442–448.

Puppalwar, P. V.; Adole, P.; Dhok, A.; Bhatkulkar, P. Int. J. Therapeutic Appl. 2015, 25, 1-6

Pullar, J. M.; Carr, A. C.; Vissers, M. C. M. Nutrients 2018, 9, 866.

Datta, D.; Namazzi, R.; Conroy, A. L.; Cusick, S. E.; Hume, H. A.; Tagoola, A.; Ware, R. E.; Opoka, R. O.; John, C. C. Trials 2019, 20, 460.

Khan, S.; Damanhouri, G.; Ahmed, T. J.; Halawani, S.; Ali, A.; Makki, A.; Khan, S. J. King Saud Univ. – Sci. 2022, 34.

Ibrahim, N. K.; Ahmed, J. H.; Hassan, M. K. Singapore Med. J. 2010, 51, 230-234.

Moody, J. O.; Ojo, O. O.; Omotade, O. O.; Adeyemo, A. A.; Olumese, P. E.; Ogundipe, O. O. Phytother. Res. 2003, 17, 1173–1176.

Nwokocha, L. M; Williams, P. A. Food Hydrocolloids 2009, 23, 1394-1397.

Ihedioha, J. N.; Okoye, C. O. Am. J. of Plant Nutr. Fertilization Tech. 2011, 1, 55-63.

Okwu, D. E.; Okoro, E. Med. Aromatic Plant Sci. Biotech. 2007, 1, 103- 106.

Uchegbu, R. I.; Ngozi-Olehi, L. C.; Mbadiugha, C. N.; Ahuchogu, A. A., Ogbuagu, O. E. J. Nat. Sci. Res. 2015, 5, 12.

Ajayi, I. A.; Oderinde, R. A.; Kajogbola, D.; Uponi, J. I. Food Chemistry, 2006, 99, 1, 115-120.

Abireh, I.; Ozioko, O.; Ikemefuna, O. J. Exp. Res. 2020, 8, 1.

Jovita, E. E.; Ani, C. O.; Uzoma, I. C.; Pamela, A. S.; Onwuka, C. K.; Ayowumi, A. M.; Daniel, N. C. Afr. J. Pharmacy Pharmacol. 2016, 11, 582- 592.

Djote W. N.; Kotue, T. C.; Mafogang, B.; Ngo, S. F.; Pieme, A. C. J. Nutr. Food Lipid Sci. 2020, 1: 86-93.

Daak, A. A.; Lopez-Toledano, M. A.; Heeney, M. M. Compl. Therapies in Med. 2020, 52, 102482.

Chukwu, C. N.; Onyedikachi, U. B.; Ejiofor, E. CMU J. Nat. Sci. 2022, 21, e2022010.

Ariyike, O. A.; Hezekiah, A. G.; Obajimi, A. O.; Olusola, O. O. GSC Biol. Pharmaceut. Sci. 2019, 7, 77–92.

Onyedikachi, U. B., Awah, F. M.; Chukwu, C. N.; Ejiofor, E. Acta Universitatis Cibiniensis. Series E: Food Tech. 2021, 25, 1-14.

Onyedikachi, B.; Ejiofor, E.; Njoku, C.; Ejiofor, M.; Kanu, M. J. Mex. Chem. Soc. 2022, 66, 433- 443

De’ Leenheer, A. P.; Nelis, H. J.; Lambert, W. E.; Bauwens, R. M. J. Chromatography A 1988, 29, 13-58.

Gul, W.; Anwar, Z.; Qadeer, K.; Perveen, S.; Ahmad, I. J. Pharmacy Pharmaceut. Sci. 2015, 3, 14-22

AOAC, Official method of Analysis. 2005, 18th Edition 935.14 and 992.24.

Chen, J.; Liu, H. Int. J. Mol. Sci. 2020, 21, 5695.

Eke, R.; Ejiofor, E.; Oyedemi, S.; Onoja, S.; Omeh, N. J. Food Biochem. 2021, e13763.

McCormick, R. L.; Ratcliff, M.; Moens, L.; Lawrence, R. Fuel Processing Tech. 2007, 88, 651–657.

Egba, S. I.; Emmanuel, N. T.; Ogugua, N. V.; Ndohnui, N. N. Int. J. Biochem. Biotech. 2012, 1, 226–229.

Ekeke, G. I.; Uwakwe, A. A.; Nwaoguikpe, R. N. Nig. J. Biochem. Mol. Biol. 2000, 16, 45–47.

Noguchi, C. T.; Schechter, A. N. Annual Rev. 1985, 4:239-245.

Tietz, N. W. Fundamentals of clinical chemistry, 2nd edn. W. B. Saunders Company, Philadelphia, 1976, 34-40.

Chikezie, P. C.; Uwakwe, A. A. Pharmacognosy Mag. 2011, 7, 121-125.

Fratianni, F.; d'Acierno, A.; Ombra, M. N.; Amato, G.; De Feo, V.; Ayala-Zavala, J. F.; Coppola, R.; Nazzaro, F. Frontiers in Nutr. 2021, 8, 775751.

Hebbel, R. P.; Eaton, J. W.; Balasingam, M.; Steinber, M. H. J. Clin. Investig. 1982, 70, 1253-1259.

Nwajagu, I. U.; Garba, A.; Nzelibe, H. C.; Chukwuekezie, N. E.; Abah, C. R.; Umar, A. T.; Anarado, C. S.; Kahu, J. C.; Olagunju, A.; Oladejo, A. A.; Bashiru I. Am. J. Food and Nutr. 2021, 9, 49-59.

Ray, D.; Deshmukh, P.; Goswami, K.; Garg, N. The Nat. Med. J. India, 2007, 20, 11–13.

Obi, C. D.; Okoye, J. I. Int. J. Innovative Food, Nutr. Sustainable Agric. 2017, 5, 18-24.

Oyedemi, S. O.; Eze, K.; Aiyegoro, A. O.; Ibeh, R. C., Ikechukwu, G. C., Swain, S. S.; Ejiofor, E.; Oyedemi, B.O. J. Biomolecular Struct. Dynamics 2021, 40: 9948- 9961.

Ejiofor, E. U.; Oyedemi, S. O.; Onoja, S. O.; SO, Omeh, N. Y. South Afr. J. Bot. 2022, 146, 213-221.

Temiye, E. O.; Duke, E. S.; Owolabi, M. A.; Renner, J. K. Anemia, 2011, 698586, 7.

Miranda, C. T.; Vermeulen-Serpa, K. M.; Pedro, A. C.; Brandão-Neto, J.; Vale, S. H.; Figueiredo, M. S. J. Trace Elements in Med. Biol. 2022, 72, 126980.

Coates, T. D.; Wood, J. C. British. J. Haematology, 2017, 177, 703 -716.

Sani, M. A.; Adewuyi, J. O.; Babatunde, A. S.; Olawumi, H. O.; Shittu, R. O. Advances in Hematology, 2015, 386451, 5.

Rees, D. C.; Williams, T. N.; Gladwin, M. T. Lancet, 2010, 376, 2018–2031.

Dash, S.; Brewer, G.; Oelshlegel, F. Nature 1974, 250, 251–25.

Eaton, J. W.; Skelton, T. D., Swofford, H. S.; Kolpin, C. E.; Jacob, H. S. Nature, 1973, 246, 105.

Bao, B.; Prasad, A. S.; Beck, F. W. Translational Res. 2008, 152, 67–80.

Natta, C. L.; Tatum, V. L.; Chow, C. K. Annals New York Acad. Sci. 1992, 669, 365-367.

Rifkind, J. M.; Heim, J. M. Biochem. 1997, 16, 4438–4443.

Monod, J.; Wyman, J.; Changeux, J. P. J. Mol. Biol. 1965, 12, 88-118.

Eaton, W. A.; Henry, E. R., Hofrichter, J.; Mozzarelli, A. Nat. Struct. Biol. 1999, 6, 351-358.

Eaton, W. A.; Bunn, H. F. Blood 2017, 12, 2719–2726.

Dennis, D.; Roberts, A. in: Trease and Evans Pharmacognosy, The Alden Press, Oxford, Great Britain. 1990, 832.

Murray, R. K.; Granner, D. K.; Mayes, P. A.; Rodwell, V. W. in: Harper’s Illustrated Biochemistry, 27th edn. McGraw Hill Companies, New York. 2006

Osuagwu, C. G. Nig. J. Biochem. Mol. Biol. 2010, 25, 68–71.

Szpunar-Krok, E.; Wondołowska-Grabowska, A. Foods (Basel, Switzerland), 2022, 11, 762.

Ratusz, K.; Symoniuk, E.; Wroniak, M.; Rudzi ´nska, M. Appl. Sci. 2018, 8, 2606.

Santos-Silva, J.; Bessa, R.; Santos-Silva, F. Livest. Prod. Sci. 2002, 77, 187–194.

Ghassemi-Golezani, K.; Farhangi-Abriz, S. Russ. J. Plant Physiol. 2018, 65, 229–236.

Colombo, M. L.; Rise, P.; Giavarini, F.; De Angelis, L.; Galli, C.; Bolis, C. L. Plant Foods Hum. Nutr, 2006, 61, 64–69.

Downloads

Published

2024-02-01

Similar Articles

You may also start an advanced similarity search for this article.