Forthcoming

Experimental and Statistical Investigation of a Novel Green Inhibitor Ferula Lutea as Potential Corrosion Inhibiting Carbon Steel in an Acidic Medium

Authors

  • Wafia Boukhedena Larbi Tebessi university https://orcid.org/0000-0002-2372-0719
  • Samir Deghboudj Larbi Tebessi University
  • Merzoug Benahmed Laboratory of Bioactive Molecules and Applications
  • Hocine Laouer Ferhat Abbas University

Keywords:

Corrosion, carbon steel, Ferula lutea, weight loss measurements, surface response methodology

Abstract

Abstract. Carbon steel corrosion inhibition in the presence and absence of Ferula lutea butanolic extract (EBFL) as a corrosion inhibitor was investigated. This study focuses on the optimization of three main parameters: inhibitor concentration, immersion time, and temperature, on the corrosion inhibition of X2C30 carbon steel by EBFL based on the weight loss method. A composite-centered design (CCD) of response surface methodology (RSM) was employed to design the experiment utilizing Design Expert software in to assess the experimental factors that influence the process. Both the corrosion rate and the inhibition efficiency were modeled using logarithmic quadratic equations. The achieved correlation between the predicted and experimental values reveals the accuracy of the proposed models. This investigation proved that (RSM) is a useful tool to predict the optimal operating parameters of the examined inhibitor to mitigate carbon steel corrosion. Gravimetric and electrochemical measurements have indicated that extract (EBFL) exhibits corrosion inhibition properties of X2C30 carbon steel in 1 M hydrochloric acid medium.

 

Resumen. Se investigó la inhibición de la corrosión del acero al carbono en presencia y ausencia del extracto butanólico de Ferula lutea (EBFL) como inhibidor de la corrosión. Este estudio se centra en la optimización de tres parámetros principales: la concentración del inhibidor, el tiempo de inmersión y la temperatura, sobre la inhibición de la corrosión del acero al carbono X2C30 por el EBFL basándose en el método de la pérdida de peso. Se empleó un diseño centrado en el compuesto (CCD) de la metodología de superficie de respuesta (RSM) para diseñar el experimento utilizando el software Design Expert en para evaluar los factores experimentales que influyen en el proceso. Tanto la velocidad de corrosión como la eficiencia de inhibición se modelaron mediante ecuaciones cuadráticas logarítmicas. La correlación alcanzada entre los valores predichos y los experimentales revela la precisión de los modelos propuestos. Esta investigación demostró que (RSM) es una herramienta útil para predecir los parámetros operativos óptimos del inhibidor examinado para mitigar la corrosión del acero al carbono. Las mediciones gravimétricas y electroquímicas han indicado que el extracto (EBFL) presenta propiedades de inhibición de la corrosión del acero al carbono X2C30 en medio ácido clorhídrico 1 M.

Downloads

Download data is not yet available.

Author Biographies

Wafia Boukhedena, Larbi Tebessi university

Department of Science Materials

Mines Laboratory, Larbi Tebessi University

 

Samir Deghboudj, Larbi Tebessi University

Department of Mechanics

Mines Laboratory, Larbi Tebessi University

Hocine Laouer, Ferhat Abbas University

Laboratory for the Valorization of Natural Biological Resources,

References

Al-Moubaraki, A.H.; Obot, I.B. J. Saudi Chem. Soc. 2021, 25, 101370. DOI: https://doi.org/10.1016/j.jscs.2021.101370.

Al-Janabi, Y.T. in: Corrosion Inhibitors in the Oil and Gas Industry, Wiley‐VCH Verlag GmbH & Co. KgaA, 2020. DOI: https://doi.org/10.1002/9783527822140.ch1.

Trabanelli, G. Corrosion. 1991, 47, 410-419. DOI: https://doi.org/10.5006/1.3585271.

Liu, J.; Yu, W.; Zhang, J.; Hu,S.; You, L.; Qiao, G. Appl. Surf. Sci. 2010, 256, 4729- 4733. DOI: https://doi.org/10.1016/j.apsusc.2010.02.082.

Rice, J. Mechanics of Solids. Encyclopedia Britannica, 1993.

Musa, A.Y.; Khadom, A.A.; Kadhum, A.A.H.; Mohamad , A.B; Takriff, M.S. J. Taiwan Inst. Chem. Eng. 2010, 41, 126-128. DOI: https://doi.org/10.1016/j.jtice.2009.08.002.

Ameer, M.A. ; Fekry, A.M. Int. J. Hydrogen Energy. 2010, 35, 11387-11396. DOI: https://doi.org/10.1016/j.ijhydene.2010.07.071.

Khaled, K.F. Mater. Chem. Phys. 2011, 125, 427-433. 542. DOI: https://doi.org/10.1016/j.matchemphys.2010.10.037.

Balulescu, M. ; Herdan, J. J. Synth. Lubr. 1997, 14, 35-45. 544. DOI: https://doi.org/10.1002/jsl.3000140104.

Zakeri, A. ; Bahmani, E.; Rouh Aghdam, A.S. Corros. Commun. 2022, 5, 25-38. DOI: https://doi.org/10.1016/j.corcom.2022.03.002.

Yaro, A.S. ; Al-Jendeel, H. ; Khadom, A.A. Desalination. 2011, 270, 193-198. DOI: https://doi.org/10.1016/j.desal.2010.11.045.

Hussin, M.H. ; Kassim, M.J. Mater. Chem. Phys. 2011, 125, 461-468. DOI: https://doi.org/10.1016/j.matchemphys.2010.10.032.

Valek, L.; Martinez, S. Materials Letters. 2007, 61, 148-151. DOI: https://doi.org/10.1016/j.matlet.2006.04.024.

Behpour, M.. Ghoreishi, S.M. ; Khayatkashani , M.; Soltani ,N. Mater. Chem. Phys. 2012, 131, 621-633. DOI: https://doi.org/10.1016/j.matchemphys.2011.10.027.

Soltani, N.; Tavakkoli, N.; Kashani, M.K.; Mosavizadeh, A.; Oguzie, E.E.; Jalali, M.R. J. Ind. Eng. Chem. 2014, 20, 3217-3227. DOI: https://doi.org/10.1016/j.jiec.2013.12.002.

Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B.; Ramezanzadeh, M. J. Ind. Eng. Chem. 2020, 84, 52-71. DOI: https://doi.org/10.1016/j.jiec.2019.12.019.

Fadhil, A.A.; Khadom, A.A.; Ahmed, S.K.; Liu, H.; Fu, C.; Mahood,H.B. Surf. Interfaces. 2020, 20, 100595. DOI:https://doi.org/10.1016/j.surfin.2020.100595.

Wang, Q.; Tan,B.; Bao, H.; Xie , Y; Mou, Y.; Li, P.; Chen, D.; Shi ,Y.; Li, X.; Yang, W. Bioelectrochemistry. 2019, 128, 49-55. DOI: https://doi.org/10.1016/j.bioelechem.2019.03.001.

Chaubey, N.; Singh, V.K.; Savita ; Quraishi, M.A.; Ebenso, E.E. Int. J. Electrochem. Sci. 2015, 10, 504-518. DOI: https://doi.org/10.1016/S1452-3981(23)05009-5.

Boukhedena, W. ; Deghboudj, S. ; Benahmed, M. ; Laouer, H. J. Mex. Chem. Soc. 2022, 66, 248-271. DOI: http://dx.doi.org/10.29356/jmcs.v66i2.1630.

Kalla, A. ; Benahmed, M. ; Djeddi,N. ; Akkal,S.; Laouer, H. Int J Ind Chem. 2016,7, 419-429. DOI: https://doi.org/10.1007/s40090-016-0094-8.

Anwar, B.; Khairunnisa, T. ; Sunarya, Y. Int. J. Corros. Scale Inhib. 2020, 9, 244-256.

Oguzie, E.E. Corros. Sci. 2007,49, 1527-1539.DOI: https://doi.org/10.1016/j.corsci.2006.08.009.

M’hiri, N.; Veys-Renaux, D.; Rocca, E.; Ioannou, I.; Boudhrioua,N.M.; Ghoul,M. Corros. Sci. 2016, 102, 55-62. DOI: https://doi.org/10.1016/j.corsci.2015.09.017.

Kosari, A.; Davoodi, A.; Moayed; M.H.; Gheshlaghi, R. Corros. 2015, 71, 819-827. DOI: https://doi.org/10.5006/1578.

Haris, N.I.N.; Sobri, S.; Kassim, N. Mater. Corros. 2019,70, 1111-1119. DOI: https://doi.org/10.1002/maco.201810653.

Okewale, A.; Adesina, O.; Akpeji, B. Nig. J. Basic Appl. Sci. 2019, 27, 47-56. DOI: 10.4314/njbas.v27i2.7.

Caglar, A., Sahan , T.; Selim Cogenli, M.; Yurtcan, A.B.; Aktas, N.; Kivrak, H. Int. J. Hydrogen Energy. 2018, 43, 11002-11011. DOI: https://doi.org/10.1016/j.ijhydene.2018.04.208.

Im, J.-K.; Cho,I.-H; Kim,S.-K.; Zoh, K.-D. Desal. 2012, 285, 306-314. DOI: https://doi.org/10.1016/j.desal.2011.10.018.

Liu, Y.; Wang , J.; Zheng ,Y.; Wang, A. Chem. Eng. J. 2012, 184, 248-255. DOI: https://doi.org/10.1016/j.cej.2012.01.049.

Akkal, S.; Louaar, S.; Benahmed, M.; Laouer, H.; Duddeck, H. Chem. Nat. Compd. 2010, 46, 719-721. DOI: https://doi.org/10.1007/s10600-010-9724-0.

Obi-Egbedi, N.O.; Essien, K.E.; Obot, I.B.; Ebenso, E.E. Int. J. Electrochem. Sci. 2011, 6, 913-930. DOI: https://doi.org/10.1016/S1452-3981(23)15045-0.

Tinsson, W. in: Plans d'expérience: constructions et analyses statistiques. Springer Science & Business Media, 2010.

Mongomery, D. in: Montgomery: design and analysis of experiments. John Willy & Sons, 2017.

Ladurée, D.; Paquer, D.; Rioult, P. Rec. Trav. Chim. Pays-Bas. 1977, 96, 254-258. DOI: https://doi.org/10.1002/recl.19770961004.

Obot, I. ; Obi-Egbedi, N. Curr. Appl. Phys, 2011, 11, 382-392.DOI: https://doi.org/10.1016/j.cap.2010.08.007.

Abdallah, M. Corros. Sci. 2002, 44, 717-728. DOI: https://doi.org/10.1016/S0010-938X(01)00100-7.

Ali, S.A.; El-Shareef, A.M. ; Al-Ghamdi , R.F. ; Saeed, M.T. Corros. Sci. 2005, 47, 2659-2678. DOI: https://doi.org/10.1016/j.corsci.2004.11.007.

Lawson, J. in: Design and Analysis of Experiments with SAS. Chapman and Hall/CRC, New York, 2010.

Yaghoobi, H.; Fereidoon, A. Polym. Compos. 2018, 39, E463-E479. DOI: https://doi.org/10.1002/pc.24596.

Yaghoobi, H.; Fereidoon, A. J. Nat. Fibers. 2019, 16, 987-1005. DOI: https://doi.org/10.1080/15440478.2018.1447416.

Cobas, M.; Sanromán, M.A.; Pazos, M. Bioresour. Technol. 2014, 160, 166-174. DOI: https://doi.org/10.1016/j.biortech.2013.12.125.

Yazici, E.Y.; Deveci, H. Hydrometallurgy. 2013, 139, 30-38. DOI: https://doi.org/10.1016/j.hydromet.2013.06.018.

Hicks,C.R. in: Fundamental concepts in the design of experiments. Holt, Rinehart and Winston,

New York, 1964.

Rossi, R.J. in: Applied biostatistics for the health sciences. John Wiley & Sons, 2022.

Garba, Z.N.; Bello, I.; Galadima, A.; Lawal , A.Y. KIJMS. 2016, 2, 20-28. DOI: https://doi.org/10.1016/j.kijoms.2015.12.002.

Anadebe, V.C.; Onukwuli, O.D. ; Omotioma, M.; Okafor, N.A. Mat. Chem. Phys. 2019, 233, 120-132. DOI: https://doi.org/10.1016/j.matchemphys.2019.05.033.

Ahamad, I.; Prasad, R. ; Quraishi, M. Corros. Sci. 2010, 52, 933-942. DOI: https://doi.org/10.1016/j.corsci.2009.11.016.

Boukhedena, W.; Deghboudj, S. J. Electrochem. Sci. Eng. 2021, 11, 227-239. DOI: https://doi.org/10.5599/jese.1050.

Wang, H.-L.; Fan, H.-B.; Zheng, J.-S. Mat. Chem. Phys. 2003, 77, 655-661. DOI: https://doi.org/10.1016/S0254-0584(02)00123-2.

Huang, W. ; Zhao, J. Colloids Surf. A. 2006, 278, 246-251. DOI:https://doi.org/10.1016/j.colsurfa.2005.12.028.

Fiala, A.; Boukhedena, W.; Lemallem, S.E.; Brahim Ladouani, H.; Allal, H. J. Bio- Tribo-Corros. 2019, 5, 1-17. DOI: https://doi.org/10.1007/s40735-019-0237-5.

Kosari, A.; Momeni, M.; Parvizi, R.; Zakeri, M.; Moayed, M.H.; Davoodi, A.; Eshghi, H. Corros. Sci. 2011, 53, 3058-3067. DOI: https://doi.org/10.1016/j.corsci.2011.05.009.

Umoren, S.A; Obot, I.B. Surf. Rev. Lett. 2008, 15, 277-286. DOI: https://doi.org/10.1142/S0218625X08011366.

Ebenso, E.E. Mat. Chem. Phys. 2003, 79, 58-70. DOI:https://doi.org/10.1016/S0254-0584(02)00446-7.

Downloads

Published

2024-04-23

Issue

Section

Regular Articles