The Contribution of Dispersion to the Intrinsic Energy Barriers of Neutral Model Diels-Alder Reactions

Authors

DOI:

https://doi.org/10.29356/jmcs.v68i1.1867

Keywords:

Diels-Alder reaction, Activation barrier, Intrinsic reaction coordinate, Dispersion interactions, Distortion/interaction model

Abstract

The intrinsic reaction coordinates for the cycloadditions between ethene and 1,3-butadiene, and ethene and cyclopentadiene, were determined at the SCS-MP2/aug-cc-pVTZ level of theory. The energy contents of the points determined for both coordinates were decomposed into their deformation and interaction contributions. From this analysis it is concluded that the higher reaction barrier for the butadiene-ethene cycloaddition can be attributed primarily to the conformational change of butadiene required by the reaction (higher deformation energy). There is also a minor contribution of the interaction term, which is more stabilizing for the cyclopentadiene-ethene reaction. An additional decomposition of these terms into their Hartree-Fock and SCS-MP2 correlation components suggests that the higher stabilization of the transition state of the cyclopentadiene-ethene cycloaddition is mostly due to stronger dispersion interactions between reactants, resulting from the larger contact surface between them, and not to stabilizing electronic effects.

 

Resumen. Se determinaron las coordenadas intrínsecas de reacción para las cicloadiciones entre eteno y 1,3-butadieno, y eteno y ciclopentadieno al nivel de teoría SCS-MP2/aug-cc-pVTZ. La energía de los puntos obtenidos en ambas coordenadas se descompuso en sus contribuciones de deformación e interacción. A partir de este análisis se concluye que la mayor barrera energética para la cicloadición eteno-butadieno puede atribuirse, principalmente, al cambio conformacional del butadieno requerido por la reacción (mayor energía de deformación). También se encuentra que el término de interacción es más estabilizante para la reacción entre ciclopentadieno y eteno, aunque la contribución de este término es menor. La descomposición adicional de las energías de interacción de estas reacciones en sus componentes de Hartree-Fock y de correlación SCS-MP2, sugiere que la mayor estabilización del estado de transición en la reacción entre ciclopentadieno y eteno, se debe principalmente a la interacción de dispersión más fuertemente estabilizante entre estos reactantes, resultado de la mayor superficie de contacto entre ellos y no a efectos electrónicos estabilizantes.

Downloads

Download data is not yet available.

References

Hoffmann, R.; Woodward, R. B. J. Am. Chem. Soc. 1965, 87, 4388-4389. DOI: https://doi.org/10.1021/ja00947a033.

Hoffmann, R.; Woodward, R. B. Acc. Chem. Res. 1968, 1, 17-22. DOI: https://doi.org/10.1021/ar50001a003.

Woodward, R. B.; Hoffmann, R., The Conservation of Orbital Symmetry. Academic Press: New York, 1970.

Fukui, K.; Yonezawa, T.; Shingu, H. J. Chem. Phys. 1952, 20, 722-725. DOI: https://doi.org/10.1063/1.1700523.

Fukui, K. Acc. Chem. Res. 1971, 4, 57-64. DOI: https://doi.org/10.1021/ar50038a003.

Houk, K. N. Acc. Chem. Res. 1975, 8, 361-369. DOI: https://doi.org/10.1021/ar50095a001.

Fleming, I. Frontier Orbitals and Organic Chemical Reactions. John Wiley & Sons: Chichester, 1976.

Robiette, R.; Marchand-Brynaert, J.; Peeters, D. J. Org. Chem. 2002, 67, 6823-6826. DOI: https://doi.org/10.1021/jo025796u.

Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R. Tetrahedron. 2002, 58, 4417-4423. DOI: https://doi.org/10.1016/S0040-4020(02)00410-6.

Domingo, L. R.; Saez, J. A. Org. Biomol. Chem. 2009, 7, 3576-3583. DOI: https://doi.org/10.1039/B909611F.

Domingo, L. R.; Chamorro, E.; Perez, P. Org. Biomol. Chem. 2010, 8, 5495-5504. DOI: https://doi.org/10.1039/C0OB00563K.

Sauer, J.; Lang, D.; Mielert, A. Angew. Chem., Int. Ed. 1962, 1, 268-269. DOI: https://doi.org/10.1002/anie.196202683.

Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry Part A: Structure and Mechanism. Fifth ed.; Springer: New York, 2007.

Bartlett, P. D.; Schueller, K. E. J. Am. Chem. Soc. 1968, 90, 6071-6077. DOI: https://doi.org/10.1021/ja01024a024.

Joshel, L. M.; Butz, L. W. J. Am. Chem. Soc. 1941, 63, 3350-3351. DOI: https://doi.org/10.1021/ja01857a033.

Walsh, R.; Wells, J. M. J. Chem. Soc., Perkin Trans. 2 1976, 52-55. DOI: https://doi.org/10.1039/P29760000052.

Rowley, D.; Steiner, H. Discuss. Faraday Soc. 1951, 10, 198-213. DOI: https://doi.org/10.1039/DF9511000198.

Smith, S. R.; Gordon, A. S. J. Phys. Chem. 1961, 65, 1124-1128. DOI: https://doi.org/10.1021/j100825a008.

Skinner, J. L.; Sliepcevich, C. M. Ind. Eng. Chem. Fundam. 1963, 2, 168-172. DOI: https://doi.org/10.1021/i160007a002.

Uchiyama, M.; Tomioka, T.; Amano, A. J. Phys. Chem. 1964, 68, 1878-1881. DOI: https://doi.org/10.1021/j100789a036.

Van Sickle, D. E.; Rodin, J. O. J. Am. Chem. Soc. 1964, 86, 3091-3094. DOI: https://doi.org/10.1021/ja01069a024.

Tardy, D. C.; Ireton, R.; Gordon, A. S. J. Am. Chem. Soc. 1979, 101, 1508-1514. DOI: https://doi.org/10.1021/ja00500a024.

Houk, K. N.; Lin, Y. T.; Brown, F. K. J. Am. Chem. Soc. 1986, 108, 554-556. DOI: https://doi.org/10.1021/ja00263a059.

Burke, L. A.; Leroy, G.; Sana, M. Theor. Chem. Acc. 1975, 40, 313-321. DOI: https://doi.org/10.1007/bf00668337.

Townshend, R. E.; Ramunni, G.; Segal, G.; Hehre, W. J.; Salem, L. J. Am. Chem. Soc. 1976, 98, 2190-2198. DOI: https://doi.org/10.1021/ja00424a031.

Burke, L. A.; Leroy, G. Theor. Chem. Acc. 1977, 44, 219-221. DOI: https://doi.org/10.1007/bf00549104.

Jug, K.; Krüger, H. W. Theor. Chem. Acc. 1979, 52, 19-26. DOI: https://doi.org/10.1007/bf00581697.

Bernardi, F.; Bottoni, A.; Robb, M. A.; Field, M. J.; Hillier, I. H.; Guest, M. F. J. Chem. Soc., Chem. Commun. 1985, 1051-1052. DOI: https://doi.org/10.1039/C39850001051.

Dewar, M. J. S.; Olivella, S.; Stewart, J. J. P. J. Am. Chem. Soc. 1986, 108, 5771-5779. DOI: https://doi.org/10.1021/ja00279a018.

Bernardi, F.; Bottoni, A.; Field, M. J.; Guest, M. F.; Hillier, I. H.; Robb, M. A.; Venturini, A. J. Am. Chem. Soc. 1988, 110, 3050-3055. DOI: https://doi.org/10.1021/ja00218a009.

Bach, R. D.; McDouall, J. J. W.; Schlegel, H. B.; Wolber, G. J. J. Org. Chem. 1989, 54, 2931-2935. DOI: https://doi.org/10.1021/jo00273a029.

Houk, K. N.; Loncharich, R. J.; Blake, J. F.; Jorgensen, W. L. J. Am. Chem. Soc. 1989, 111, 9172-9176. DOI: https://doi.org/10.1021/ja00208a006.

Jorgensen, W. L.; Lim, D.; Blake, J. F. J. Am. Chem. Soc. 1993, 115, 2936-2942. DOI: https://doi.org/10.1021/ja00060a048.

Li, Y.; Houk, K. N. J. Am. Chem. Soc. 1993, 115, 7478-7485. DOI: https://doi.org/10.1021/ja00069a055.

Herges, R.; Jiao, H.; Schleyer, P. v. R. Angew. Chem., Int. Ed. 1994, 33, 1376-1378. DOI: https://doi.org/10.1002/anie.199413761.

Houk, K. N.; Li, Y.; Storer, J.; Raimondi, L.; Beno, B. J. Chem. Soc., Faraday Trans. 1994, 90, 1599-1604. DOI: https://doi.org/10.1039/FT9949001599.

Bernardi, F.; Celani, P.; Olivucci, M.; Robb, M. A.; Suzzi-Valli, G. J. Am. Chem. Soc. 1995, 117, 10531-10536. DOI: https://doi.org/10.1021/ja00147a014.

Jursic, B.; Zdravkovski, Z. J. Chem. Soc., Perkin Trans. 2 1995, 1223-1226. DOI: https://doi.org/10.1039/P29950001223.

Goldstein, E.; Beno, B.; Houk, K. N. J. Am. Chem. Soc. 1996, 118, 6036-6043. DOI: https://doi.org/10.1021/ja9601494.

Torrent, M.; Durán, M.; Solà, M. SCIENTIA gerundensis. 1996, 22, 123-131.

Branchadell, V. Int. J. Quantum Chem. 1997, 61, 381-388. DOI: https://doi.org/10.1002/(sici)1097-461x(1997)61:3<381::aid-qua3>3.0.co;2-s.

Jiao, H.; Schleyer, P. v. R. J. Phys. Org. Chem. 1998, 11, 655-662. DOI: https://doi.org/10.1002/(SICI)1099-1395(199808/09)11:8/9<655::AID-POC66>3.0.CO;2-U.

Spino, C.; Pesant, M.; Dory, Y. Angew. Chem., Int. Ed. 1998, 37, 3262-3265. DOI: https://doi.org/10.1002/(sici)1521-3773(19981217)37:23<3262::aid-anie3262>3.0.co;2-t.

Bradley, A. Z.; Kociolek, M. G.; Johnson, R. P. J. Org. Chem. 2000, 65, 7134-7138. DOI: https://doi.org/10.1021/jo000916o.

Sakai, S. J. Phys. Chem. A. 2000, 104, 922-927. DOI: https://doi.org/10.1021/jp9926894.

Huang, C.-H.; Tsai, L.-C.; Hu, W.-P. J. Phys. Chem. A. 2001, 105, 9945-9953. DOI: https://doi.org/10.1021/jp012740f.

Dinadayalane, T. C.; Vijaya, R.; Smitha, A.; Sastry, G. N. J. Phys. Chem. A. 2002, 106, 1627-1633. DOI: https://doi.org/10.1021/jp013910r.

Guner, V.; Khuong, K. S.; Leach, A. G.; Lee, P. S.; Bartberger, M. D.; Houk, K. N. J. Phys. Chem. A. 2003, 107, 11445-11459. DOI: https://doi.org/10.1021/jp035501w.

Lischka, H.; Ventura, E.; Dallos, M. ChemPhysChem 2004, 5, 1365-1371. DOI: https://doi.org/10.1002/cphc.200400104.

Sakai, S. J. Phys. Chem. A. 2006, 110, 6339-6344. DOI: https://doi.org/10.1021/jp0560011.

Hirao, H. J. Comput. Chem. 2008, 29, 1399-1407. DOI: https://doi.org/10.1002/jcc.20899.

Murray, J. S.; Yepes, D.; Jaque, P.; Politzer, P. Comput. Theor. Chem. 2015, 1053, 270-280. DOI: https://doi.org/10.1016/j.comptc.2014.08.010.

Scarborough, D. L. A.; Kobayashi, R.; Thompson, C. D.; Izgorodina, E. I. Int. J. Quantum Chem. 2015, 115, 989-1001. DOI: https://doi.org/10.1002/qua.24933.

Sexton, T.; Kraka, E.; Cremer, D. J. Phys. Chem. A 2016, 120, 1097-1111. DOI: https://doi.org/10.1021/acs.jpca.5b11493.

Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. Tetrahedron. 2017, 73, 1718-1724. DOI: https://doi.org/10.1016/j.tet.2017.02.012.

Chakraborty, D.; Das, R.; Chattaraj, P. K. ChemPhysChem. 2017, 18, 2162-2170. DOI: https://doi.org/10.1002/cphc.201700308.

Chen, B.; Hoffmann, R.; Cammi, R. Angew. Chem., Int. Ed. 2017, 56, 11126-11142. DOI: https://doi.org/10.1002/anie.201705427.

Casals-Sainz, J. L.; Francisco, E.; Martín Pendás, Á. Z. Anorg. Allg. Chem. 2020, 646, 1062-1072. DOI: https://doi.org/10.1002/zaac.202000038.

Jara-Cortés, J.; Leal-Sánchez, E.; Hernández-Trujillo, J. J. Phys. Chem. A. 2020, 124, 6370-6379. DOI: https://doi.org/10.1021/acs.jpca.0c04171.

Ayarde-Henríquez, L.; Guerra, C.; Duque-Noreña, M.; Rincón, E.; Pérez, P.; Chamorro, E. J. Phys. Chem. A. 2021, 125, 5152-5165. DOI: https://doi.org/10.1021/acs.jpca.1c01448.

McLachlan, A. D.; Ball, M. A. Rev. Mod. Phys. 1964, 36, 844-855. DOI: https://doi.org/10.1103/RevModPhys.36.844.

Jurečka, P.; Šponer, J.; Černý, J.; Hobza, P. Phys. Chem. Chem. Phys. 2006, 8, 1985-1993. DOI: https://doi.org/10.1039/b600027d.

Grimme, S. J. Chem. Phys. 2003, 118, 9095-9102. DOI: https://doi.org/10.1063/1.1569242.

Gerenkamp, M.; Grimme, S. Chem. Phys. Lett. 2004, 392, 229-235. DOI: https://doi.org/10.1016/j.cplett.2004.05.063.

Goumans, T. P. M.; Ehlers, A. W.; Lammertsma, K.; Würthwein, E.-U.; Grimme, S. Chem. - Eur. J. 2004, 10, 6468-6475. DOI: https://doi.org/10.1002/chem.200400250.

Piacenza, M.; Grimme, S. J. Comput. Chem. 2004, 25, 83-99. DOI: https://doi.org/10.1002/jcc.10365.

Grimme, S.; Mück-Lichtenfeld, C.; Würthwein, E.-U.; Ehlers, A. W.; Goumans, T. P. M.; Lammertsma, K. J. Phys. Chem. A 2006, 110, 2583-2586. DOI: https://doi.org/10.1021/jp057329x.

Hill, J. G.; Platts, J. A.; Werner, H.-J. Phys. Chem. Chem. Phys. 2006, 8, 4072-4078. DOI: https://doi.org/10.1039/B608623C.

Antony, J.; Grimme, S. J. Phys. Chem. A. 2007, 111, 4862-4868. DOI: https://doi.org/10.1021/jp070589p.

Takatani, T.; David Sherrill, C. Phys. Chem. Chem. Phys. 2007, 9, 6106-6114. DOI: https://doi.org/10.1039/B709669K.

Bates, D. M.; Anderson, J. A.; Oloyede, P.; Tschumper, G. S. Phys. Chem. Chem. Phys. 2008, 10, 2775-2779 DOI: https://doi.org/10.1039/B718720C.

Takatani, T.; Hohenstein, E. G.; Sherrill, C. D. J. Chem. Phys. 2008, 128, 124111-124117. DOI: https://doi.org/10.1063/1.2883974.

King, R. A. Mol. Phys. 2009, 107, 789-795. DOI: https://doi.org/10.1080/00268970802641242.

Riley, K. E.; Platts, J. A.; Řezáč, J.; Hobza, P.; Hill, J. G. J. Phys. Chem. A. 2012, 116, 4159-4169. DOI: https://doi.org/10.1021/jp211997b.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01, Gaussian, Inc.: Wallingford, CT, 2013.

Kesharwani, M. K.; Brauer, B.; Martin, J. M. L. J. Phys. Chem. A. 2015, 119, 1701-1714. DOI: https://doi.org/10.1021/jp508422u.

Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553-566. DOI: https://doi.org/10.1080/00268977000101561.

NIST Chemistry Webbook. http://webbook.nist.gov, accessed in June 2022.

Alvarez-Idaboy, J. R.; Galano, A. Theor. Chem. Acc. 2010, 126, 75-85. DOI: https://doi.org/10.1007/s00214-009-0676-z.

Xidos, J. D.; Poirier, R. A.; Pye, C. C.; Burnell, D. J. J. Org. Chem. 1998, 63, 105-112. DOI: https://doi.org/10.1021/jo9712815.

Houk, K. N.; Gandour, R. W.; Strozier, R. W.; Rondan, N. G.; Paquette, L. A. J. Am. Chem. Soc. 1979, 101, 6797-6802. DOI: https://doi.org/10.1021/ja00517a001.

Coxon, J. M.; Grice, S. T.; Maclagan, R. G. A. R.; McDonald, D. Q. J. Org. Chem. 1990, 55, 3804-3807. DOI: https://doi.org/10.1021/jo00299a021.

Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2007, 129, 10646-10647. DOI: https://doi.org/10.1021/ja0734086.

Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2008, 130, 10187-10198. DOI: https://doi.org/10.1021/ja800009z.

Jones, G. O.; Houk, K. N. J. Org. Chem. 2008, 73, 1333-1342. DOI: https://doi.org/10.1021/jo702295d.

Hayden, A. E.; Houk, K. N. J. Am. Chem. Soc. 2009, 131, 4084-4089. DOI: https://doi.org/10.1021/ja809142x.

Bickelhaupt, F. M.; Houk, K. N. Angew. Chem., Int. Ed. 2017, 56, 10070-10086. DOI: https://doi.org/10.1002/anie.201701486.

Bickelhaupt, F. M. J. Comput. Chem. 1999, 20, 114-128. DOI: https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<114::AID-JCC12>3.0.CO;2-L.

Diefenbach, A.; Bickelhaupt, F. M. J. Phys. Chem. A 2004, 108, 8460-8466. DOI: 10.1021/jp047986+.

De Jong, G. T.; Bickelhaupt, F. M. ChemPhysChem 2007, 8, 1170-1181. DOI: https://doi.org/10.1002/cphc.200700092.

Van Zeist, W.-J.; Bickelhaupt, F. M. Org. Biomol. Chem. 2010, 8, 3118-3127. DOI: https://doi.org/10.1039/B926828F.

Fernández, I.; Bickelhaupt, F. M. Chem. Soc. Rev. 2014, 43, 4953-4967. DOI: https://doi.org/10.1039/C4CS00055B.

Wolters, L. P.; Bickelhaupt, F. M. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2015, 5, 324-343. DOI: https://doi.org/10.1002/wcms.1221.

Eisler, B.; Wassermann, A. Discuss. Faraday Soc. 1951, 235. DOI: https://doi.org/10.1039/DF9511000213.

Eisler, B.; Wassermann, A. J. Chem. Soc. 1953, 979-982. DOI: https://doi.org/10.1039/JR9530000979.

Craig, D.; Shipman, J. J.; Fowler, R. B. J. Am. Chem. Soc. 1961, 83, 2885-2891. DOI: https://doi.org/10.1021/ja01474a023.

Morokuma, K. J. Chem. Phys. 1971, 55, 1236-1244. DOI: https://doi.org/10.1063/1.1676210.

Kitaura, K.; Morokuma, K. Int. J. Quantum Chem. 1976, 10, 325-340. DOI: https://doi.org/10.1002/qua.560100211.

Downloads

Additional Files

Published

2024-01-01

Issue

Section

Special Issue dedicated to Prof. Joaquín Tamariz