Microwave-Assisted Reactivity of a Fischer Alkynyl Carbene Complex with Benzylidene Anilines
DOI:
https://doi.org/10.29356/jmcs.v68i1.1863Keywords:
Fischer carbene complexes, benzylidene anilines, microwave irradiation, DFT analysis, electronic effectAbstract
The reaction between the Fischer carbene complex (CO)5Cr=C(OEt)CºCPh and various benzylidene anilines RCH=NR1 was promoted by microwave irradiation, generating stable cross-conjugated metallahexatrienes in 45-70 % yield. Compared to conventional heating, the present conditions provided shorter reaction times with moderate yields. The geometrical configuration and the most stable conformation for each of the Fischer carbene complexes and their oxidation products were established by NMR and DFT analysis. The reaction mechanism was explored by DFT calculations of the potential energy surface, suggesting a 1,4-addition/ring closure/electrocyclic opening cascade process.
Resumen. Se reporta la reactividad entre el carbeno de Fischer (CO)5Cr=C(OEt)CºCPh y las bencilidén anilinas, RCH=NR1, empleando irradiación de microondas. Los resultados indican que el calentamiento por microondas generó metalohexatrienos cruzados estables en rendimientos de 45-70 %, mostrando además, que los nuevos complejos se obtienen en tiempos de reacción más cortos y rendimientos moderados en comparación con las condiciones de calentamiento convencional. La configuración geométrica y la conformación más estable para los complejos carbénicos de Fischer y de sus derivados oxidados fueron establecidos por medio de RMN y DFT. La exploración de la superficie de energía potencial por cálculos DFT mostró que el proceso consistió en una reacción en cascada incluyendo una secuencia de adición-1,4, cierre de anillo y apertura electrocíclica.
Downloads
References
de Meijere, A. Pure Appl. Chem. 1996, 68, 61–72. DOI: https://doi.org/10.1351/pac199668010061.
de Meijere, A.; Schirmer, H.; Duetsch, M. Angew. Chem. 2000, 39, 3965–4002. DOI: https://doi.org/10.1002/1521-3773(20001117)39:22<3964::aid-anie3964>3.0.co;2-c.
Wu, Y.-T.; de Meijere, A. Top. Organomet. Chem. 2004, 13, 21–57. DOI: https://doi.org/10.1007/b98762.
Barluenga, J.; Santamaría, J.; Tomás, M. Chem. Rev. 2004, 104, 2259–2283. DOI: https://doi.org/10.1021/cr0306079.
Dötz, K. H.; Stendel, J. J. Chem. Rev. 2009, 109, 3227–3274.
Santamaría, J.; Aguilar, E. Org. Chem. Front. 2016, 3, 1561–1588. DOI: https://doi.org/10.1039/c6qo00206d.
Fernández-Rodríguez, M. Á.; García-García, P.; Aguilar, E. Chem. Commun. 2010, 46, 7670–7687. DOI: https://doi.org/10.1039/c0cc02337j.
Feliciano, A.; Vázquez, J. L.; Benítez‐Puebla, L. J.; Velazco‐Cabral, I.; Cruz Cruz, D.; Delgado, F.; Vázquez, M. A. Chem. – A Eur. J. 2021, 27, 8233–8251. DOI: https://doi.org/10.1002/chem.202005434.
Dötz, K. H. in: Verlag chemie; Fischer, E. O., Ed.; Weinheim, 1983.
Chan, K. S.; Wulff, W. D. J. Am. Chem. Soc. 1986, 108, 5229–5236.
de La Cruz, F. N.; López, J.; Jiménez-Halla, J. Ó. C.; Flores-Álamo, M.; Tamaríz, J.; Delgado, F.; Vázquez, M. A. Org. Biomol. Chem. 2015, 13, 11753–11760. DOI: https://doi.org/10.1039/c5ob01655j.
López, J.; de la Cruz, F. N.; Flores-Conde, M. I.; Flores-Álamo, M.; Delgado, F.; Tamariz, J.; Vázquez, M. A. Eur. J. Org. Chem. 2016, 2016, 1314–1323. DOI: https://doi.org/10.1002/ejoc.201501211.
Reyes, L.; Mendoza, H.; Vázquez, M. A.; Ortega-Jiménez, F.; Fuentes-Benítes, A.; Flores-Conde, M. I.; Jiménez-Vázquez, H.; Miranda, R.; Tamariz, J.; Delgado, F. Organometallics. 2008, 27, 4334–4345. DOI: https://doi.org/10.1021/om8002416.
Benítez-Puebla, L. J.; López, J.; Flores-Álamo, M.; Cruz, D. C.; Peña-Cabrera, E.; Delgado, F.; Tamariz, J.; Vázquez, M. A. Eur. J. Org. Chem. 2019, 2019, 6571–6578. DOI: https://doi.org/10.1002/ejoc.201901047.
Aumann, R.; Yu, Z.; Fröhlich, R.; Zippel, F. Eur. J. Inorg. Chem. 1998, 1998, 1623–1629. DOI: https://doi.org/10.1002/(SICI)1099-0682(199811)1998:11<1623::AID-EJIC1623>3.0.CO;2-P.
Rivado-Casas, L.; Campos, P. J.; Sampedro, D. Organometallics. 2010, 29, 3117–3124. DOI: https://doi.org/10.1021/om100219h.
Aumann, R.; Yu, Z.; Fröhlich, R. J. Organometallic Chem. 1997, 549, 311–318. DOI: https://doi.org/10.1016/S0022-328X(97)00526-3.
Herndon, J. W. Coord. Chem. Rev. 2018, 356, 1–114. DOI: https://doi.org/10.1016/j.ccr.2017.09.003.
Barluenga, J.; Aguilar, E. in: Advances in Organometallic Chemistry; Elsevier Inc., 2017; 67, 1–150. DOI: https://doi.org/10.1016/bs.adomc.2017.04.001.
Barluenga, J.; Tomás, M.; López-Pelegrín, J. A.; Rubio, E. Tetrahedron Lett. 1997, 38, 3981–3984. DOI: https://doi.org/10.1016/S0040-4039(97)00737-5.
Aumann, R.; Yu, Z.; Fröhlich, R. Organometallics. 1998, 17, 2897–2905. DOI: https://doi.org/10.1021/om980068b.
Aumann, R. Eur. J. Org. Chem. 2000, 17–31. DOI: https://doi.org/10.1002/(SICI)1099-0690(200001)2000:1<17::AID-EJOC17>3.0.CO;2-T.
Hegedus, L. S.; McGuire, M. A.; Schultze, L. M.; Yijun, C.; Anderson, O. P. J. Am. Chem. Soc. 1984, 106, 2680–2687. DOI: https://doi.org/10.1021/ja00321a032.
Funke, F.; Duetsch, M.; Stein, F.; Noltemeyerl, M.; De Meijere, A. Chem. Ber. 1994, 127, 911–920.
Rivado-casas, L.; Sampedro, D.; Campos, P. J.; Fusi, S.; Zanirato, V.; Olivucci, M. J. Org. Chem. 2009, 74, 4666–4674. DOI: https://doi.org/10.1021/jo802792j
Blanco-Lomas, M.; Caballero, A.; Campos, P. J.; González, H. F.; López-Sola, S.; Rivado-Casas, L.; Rodríguez, M. A.; Sampedro, D. Organometallics. 2011, 30, 3677–3682. DOI: https://doi.org/https://doi.org/10.1021/om200438y.
González, H. F.; Blanco-Lomas, M.; Rivado-Casas, L.; Rodríguez, M. A.; Campos, P. J.; Sampedro, D. Organometallics. 2012, 31, 6572–6581. DOI: https://doi.org/https://doi.org/10.1021/om300570q.
Luo, N.; Zheng, Z.; Yu, Z. Org. Lett. 2011, 13, 3384–3387. DOI: https://doi.org/10.1021/ol201139w.
Fernandez, I.; Cossío, F. P.; Sierra, M. A. Acc. Chem. Res. 2011, 44, 479–490.
Rivero, A. R.; Fernández, I.; Sierra, M. A. Chem. Eur. J. 2014, 20, 1359–1366. DOI: https://doi.org/10.1002/chem.201302029.
Hegedus, L. S.; Weck, G. De; D’Andrea, S. J. Am. Chem. Soc. 1988, 110, 2122–2126. DOI: https://doi.org/10.1021/ja00215a019.
Su, M. Der. ACS Omega. 2017, 2, 5395–5406. DOI: https://doi.org/10.1021/acsomega.7b00766.
Arrieta, A.; Cossio, F. P.; Fernandez, I.; Gomez-Gallego, M.; Lecea, B.; Mancheño, M. J.; Sierra, M. A. J. Am. Chem. Soc. 2000, 122, 11509–11510. DOI: https://doi.org/10.1021/ja000706t.
Hutchinson, E. J.; Kerr, J.; Magennis, E. J. Chem. Commun. 2002, 2262–2263. DOI: https://doi.org/10.1039/B206981B
Shanmugasundaram, M.; Garcia-Martinez, I.; Li, Q.; Estrada, A.; Martinez, N. E.; Martinez, L. E. Tetrahedron Lett. 2005, 46, 7545–7548. DOI: https://doi.org/10.1016/j.tetlet.2005.08.158.
Artillo, A.; Sala, G. Della; De Santis, M.; Llordes, A.; Ricart, S.; Spinella, A. J. Organomet. Chem. 2007, 692, 1277–1284. DOI: https://doi.org/10.1016/j.jorganchem.2006.08.097.
Spinella, A.; Caruso, T.; Pastore, U.; Ricart, S. J. Organomet. Chem. 2003, 684, 266–268. DOI: https://doi.org/10.1016/S0022-328X(03)00756-3.
Kashinath, D.; Mioskowski, C.; Falck, J. R.; Goli, M.; Meunier, S.; Baati, R.; Wagner, A. Org. Biomol. Chem. 2009, 7, 1771–1774. DOI: https://doi.org/10.1039/b903244b.
Vázquez, M. A.; Reyes, L.; Miranda, R.; García, J. J.; Jiménez-Vázquez, H. A.; Tamariz, J.; Delgado, F. Organometallics. 2005, 24, 3413–3421. DOI: https://doi.org/10.1021/om050159q.
Montenegro, M. M.; Vega-Báez, J. L.; Vázquez, M. A.; Flores-Conde, M. I.; Sánchez, A.; González-Tototzin, M. A.; Gutiérrez, R. U.; Lazcano-Seres, J. M.; Ayala, F.; Zepeda, L. G.; Tamariz, J.; Delgado, F. J. Organomet. Chem. 2016, 825–826, 41–54. DOI: https://doi.org/10.1016/j.jorganchem.2016.10.017.
Feliciano, A.; Padilla, R.; Escalante, C. H.; Herbert-Pucheta, E.; Vázquez, M. A.; Tamariz, J.; Delgado, F. J. Organometallic Chem. 2020, 923, 121360. DOI: https://doi.org/10.1016/j.jorganchem.2020.121360
Flores-Conde, M. I.; de la Cruz, F. N.; Lopez, J.; Jiménez-Halla, J. Ó. C.; Peña-Cabrera, E.; Flores-Álamo, M.; Delgado, F.; Vázquez, M. Á. Appl. Organomet. Chem. 2017, e4202, 1–12. DOI: https://doi.org/https://doi.org/10.1002/aoc.4202.
Vázquez, M. Á.; Landa, M.; Reyes, L.; Miranda, R.; Tamariz, J.; Delgado, F. Synth. Commun. 2004, 34, 2705–2718. DOI: https://doi.org/10.1081/SCC-200026190.
Lee, S. Y. A.; Yang, H. C.; Su, F. Y. Tetrahedron Lett. 2001, 42, 301–303. DOI: https://doi.org/10.1016/S0040-4039(00)01954-7.
Wang, X.; Yang, Y.; Zhao, Y.; Wang, S.; Hu, W.; Li, J.; Wang, Z.; Yang, F.; Zhao, J. J. Org. Chem. 2020, 85, 6188–6194. DOI: https://doi.org/10.1021/acs.joc.0c00485.
Sheldrick, G. M. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. DOI: https://doi.org/10.1107/S0108767307043930.
Sheldrick, G. M. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. DOI: https://doi.org/10.1107/S2053229614024218.
Sheldrick, G. M. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3–8. DOI: https://doi.org/10.1107/S2053273314026370.
Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341. DOI: https://doi.org/10.1107/S0021889808042726.
Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125. DOI: https://doi.org/10.1063/1.2370993.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ort, D. J. F. Gaussian Inc: Wallingford CT 2016.
Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. J. Comput. Chem. 1983, 4, 294–301. DOI: https://doi.org/10.1002/jcc.540040303.
Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270–283. DOI: https://doi.org/10.1063/1.448799.
Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215–241. DOI: https://doi.org/10.1007/s00214-007-0310-x.
Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999–3093. DOI: https://doi.org/10.1021/cr9904009.
Cammi, R.; Mennucci, B.; Tomasi, J.; Generale, C.; Uni, V.; Scienze, V.; Industriale, C.; Uni, V. J. Phys. Chem. A. 2000, 104, 5631–5637.
Vázquez, M. A.; Cessa, L.; Vega, J. L.; Miranda, R.; Herrera, R.; Jiménez-Vázquez, H. A.; Tamariz, J.; Delgado, F. Organometallics. 2004, 23, 1918–1927. DOI: https://doi.org/10.1021/om0343317.
Aumann, R.; Heinen, H.; Hinterding, P.; Strater, N.; Krebs, B. Chem Ber. 1991, 124, 1229–1236.
Aumann, R.; Jasper, B.; Fröhlich, R. Organometallics. 1995, 14, 231–237. DOI: https://doi.org/10.1021/om00001a035.
Merlic, C. A.; Xu, D. J. Am. Chem. Soc. 1991, 113, 7418–7420. DOI: https://doi.org/10.1021/ja00019a047.
Aumann, R.; Michael, K.; Roths, K.; Frohlich, R. Synlett. 1994, 1041–1044. DOI: https://doi.org/10.1055/s-1994-23079
Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 José Francisco Delgado Reyes, Feliciano, Vazquez, Velazco-Cabral, Vazquez, Benitez-Puebla, Mastachi, Lagunas-Rivera, García-Revilla
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.