Optimizing Conditions for Ultrasound-Assisted Extraction of the Betulinic Acid, Oleanolic Acid, and Ursolic Acid from the Jujube using Response Surface Methodology (RSM)

Authors

  • Zhaleh Khoshsima Department of Analytical Chemistry, Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
  • Amir Abdolah Mehrdad Sharif Islamic Azad University North Tehran Branch
  • Ahmad Akrami Department of Analytical Chemistry, Faculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran

DOI:

https://doi.org/10.29356/jmcs.v67i1.1862

Keywords:

Betulinic acid, Oleanolic acid, Ursolic acid, Ultrasound-assisted extraction, Box-Behnken Design

Abstract

Pentacyclic triterpenic acids have potential effects in treating human diseases. Thus, it seems necessary to have an effective method to extract and separate triterpenic acids from plants and fruits such as jujube. To this end, this study optimized ultrasound-assisted extraction of Betulinic acid (BA), Oleanolic acid (OA), and Ursolic acid (UA) from Iranian jujube using response surface methodology (RSM) and quantified by high-performance liquid chromatography (HPLC). Box-Behnken Design (BBD) was used to model the response surface. The selected independent variables were ultrasonic bath temperature (T), sonication time (θ), and liquid to solid ratio (α). The P-value and R-squared (R2) for all extraction efficiencies indicated a good correlation between the experimental results and those predicted by the quadratic model. The analysis of variance (ANOVA) results showed the significant impact of linear coefficients (T, θ, α), quadratic coefficients (T2, θ2, α2), and interaction coefficients (Tθ, Tα, θα) of the model on the extraction of three triterpenic acids. The predicted optimal temperature, sonication time, and liquid to solid ratio were 40.34 °C, 34.63 min, and 14.85 mL/g. The maximum yields for BA, OA, and UA were 304.14, 170.61, and 195.23 µg/g, respectively. Extraction was carried out by the calculated rounded up optimal values of T=40 °C, θ=35 min, and α=15 mL/g. The extraction efficiencies for BA, OA, and UA were 303.83±0.85, 169.52±0.86, and 195.84±0.75 µg/g, respectively. These results were comparable to those calculated under model-optimized conditions, indicating the accuracy of our model.

 

Resumen. Los ácidos triterpénicos pentacíclicos tienen potencialmente efectos en el tratamiento de enfermedades humanas. Por ello es necesario disponer de un método eficaz para extraer y separar los ácidos triterpénicos de plantas y frutos como el jujube (Ziziphus jujuba). Con este fin, en este estudio se optimizó la extracción asistida por ultrasonido de los ácidos betulínico (BA), oleanólico (OA) y ursólico (UA) del jujube iraní utilizando la metodología de superficie de respuesta (RSM) y cuantificada por cromatografía líquida de alta resolución (HPLC). Se utilizó el diseño Box-Behnken Design (BBD) para modelar la superficie de respuesta. Las variables independientes seleccionadas fueron la temperatura del baño ultrasónico (T), el tiempo de sonicación (θ) y la proporción de líquido a sólido (α). El valor P y R-cuadrática (R2) para todas las eficiencias de extracción indicaron una buena correlación entre los resultados experimentales y los predichos por el modelo cuadrático. Los resultados del análisis de varianza (ANOVA) mostraron el impacto significativo de los coeficientes lineales (T, θ, α), los coeficientes cuadráticos (T2, θ2, α2) y los coeficientes de interacción (Tθ, Tα, θα) del modelo en la extracción de los tres ácidos triterpénicos. La temperatura óptima predicha, el tiempo de sonicación y la proporción de líquido a sólido fueron 40.34 °C, 34.63 min y 14.85 ml/g. Los rendimientos máximos para BA, OA y UA fueron 304.14, 170.61 y 195.23 µg/g, respectivamente. La extracción se llevó a cabo mediante los valores óptimos redondeados, T = 40 °C, θ = 35 min y α = 15 ml/g. Las eficiencias de extracción para BA, OA y UA fueron 303.83 ± 0,85, 169.52 ± 0,86 y 195.84 ± 0,75 µg/g, respectivamente. Estos resultados fueron comparables a los calculados en condiciones del modelo optimizado, lo que indica la precisión del modelo propuesto.

Downloads

Download data is not yet available.

References

Choi, S.H.; Ahn, J.B.; Kim, H.J.; NK, I.m.; Kozukue, N.; Levin, C.E.; Friedman, M. J Agric Food chem. 2012, 60, 10245–10255.

Kou, X.; Chen, Q. ; Li, X . ; Li, M.; Kan, C.; Chen, B. ; Zhang, Y.; Xue, Z. Food Chem. 2015, 173, 1037–1044.

Gao, Q.H.; Wu, C.S.; Wang, M. J Agric Food Chem. 2013, 61, 3351−3363.

Cichewicz, R.H.; Kouzi, S.A. Med Res Rev. 2004, 24, 90– 114.

Hordyjewska, A.; Ostapiuk, A.; Horecka, A.; Kurzepa, J. Phytochem Rev. 2019, 18, 929–951.

Vasconcelos, M.A.L.; Royo, V.A.; Ferreira, D.S.; Crotti, A.E.M.; Silva, M.L.A.; Carvalho, J.C.T.; Bastos, J.K.; Cunha,W.R. Zeitschrift fur Naturforschung. 2006, 61, 477–482.

Shibata, S. Journal of Korean Medical Science. 2001, 16, 28–37.

Ma, X.H.; Zhao, Y.C.; Yin, L.; Han, D.W.; Ji, C.X. Acta Pharmaceutica Sinica. 1982,17, 93–97.

Cao, Y.P.; Yang, X.L.; Xue, C.H. Food Sci. 2007, 10, 163–167.

Song, L.; Zhang, L.; Xu, L.; Ma, Y.; Lian, W.; Liu, Y.; Wang, Y. Plants. 2020, 9, 412.

Jacotet Navarro, M.; Rombaut, N.; Fabiano Tixier, A.S.; Danguien, M.; Bily A.; Chemat, F. Ultrason Sonochem. 2015, 27, 102-109.

Wen, C.T.; Zhang, J.X.; Zhang, H.H.; Dzah, C.S.; Zandile, M.; Duan, Y.Q.; Ma, H.L.; Luo, X.P. Ultrason Sonochem. 2018, 48, 538–549.

López-Hortas, L.; Pérez-Larrán, P.; González-Muñoz, M.J.; Falqué, E.; Domínguez, H. Food Res Int. 2018, 103, 130–149.

Xie, P.J; Huang, L.X.; Zhang, C.H.; Deng, Y.J.; Wang, X.J.; Cheng, J. Food Chem. 2019, 276, 662–674.

Fu, Q.; Zhang, L.; Cheng, N.; Jia, M.; Zhang, Y. Food Bioprod Process. 2014, 92, 321–32.

Wei, M. C.; Yang, Y.C. Separation and Purification Technology. 2014, 130, 182-192.

Wua, H.; Li, G.; Liu, S.; Liu, D.; Chen, G.; Hu, N.; Suo, Y.; You, J. Journal of Pharmaceutical and Biomedical Analysis. 2015, 107, 98–107.

Aniceto, J.P.S.; Azenha, I.S.; Domingues, F.M.J.; Mendes, A.; Silva, C.M. Separation and Purification Technology. 2018, 192, 401-411.

Quanhong, L.; Caili. F.; Food Chemistry. 2005, 92, 701–706.

Janicsák, G.; Veres, K.; Kállai, M.; Máthé, I. Chromatographia. 2003, 58, 295–299.

Gopal, V.; Mandal, V.; Mandal S.C. Journal of Acute Disease. 2014, 3, 59-61.

Xu, X.H.; Sun, Q.; Zang, Z.H. Journal of pharmaceutical Analysis, 2012, 2, 238-240.

Tian, S.; Shi, Y.; Yu, Q.; Upur, H. Pharmacognosy Magazine. 2010, 6, 116-119.

Peng, Y.; Liu, M. Acta Hortic. 2010, 853, 163-170.

Zhao, G.; Yan, W.; Cao, D. Journal of Pharmaceutical and Biomedical Analysis. 2007, 43, 959-962.

Olivieri, A.C. Analytica Chimica Acta. 2015, 868, 10-22.

Costa, N. R.; Lourenco, J.; Pereira Z. L. Chemometrics and Intelligent Laboratory Systems. 2011, 107, 234-244.

Downloads

Published

2023-01-09

Issue

Section

Regular Articles