Kinetic Study of Ru(III) Promoted Oxidation of L-Tryptophan in an Anionic Surfactant Medium by Hexacyanoferrate(III)

Authors

  • Abhishek Srivastava Dept. of Chemistry, GLA University, Mathura
  • Manjusha Bio-Analytical Division, Shriram Institute for Industrial Research, 19-University Road, 110007-Delhi, India
  • Neetu Srivastava Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur, 273001, U.P. India
  • Radhey Mohan Naik Department of Chemistry, Lucknow University, Lucknow- 226007 (UP), India

DOI:

https://doi.org/10.29356/jmcs.v67i1.1829

Keywords:

Critical micellar concentration, Surfactant, L-tryptophan, Activation parameters, Kinetics and Mechanism, Hexacyanoferrate(III)

Abstract

The kinetic investigation of Ru(III) promoted oxidation of L-tryptophan (Trp) by [Fe(CN)6]3- has been performed in anionic sodium dodecyl sulfate (SDS) micellar medium by recording the decrease in absorbance at 420 nm, corresponding to [Fe(CN)6]3- using UV-visible spectrophotometer. Pseudo-first-order condition has been used to examine the progress of reaction as a function of [Fe(CN)63−], ionic strength, [OH-], [SDS], [Ru3+], [Trp], and temperature by changing one variable at a time. The results exhibit that [OH-], [SDS], and [Trp] are the decisive parameter showing an appreciable effect on reaction rate. The reaction exhibits first-order kinetics in the studies concentration range of Ru(III), [Fe(CN)6]3− and at lower [Trp] and [OH-]. The incremental trend observed in the reaction rate with electrolyte concentration shows a positive salt effect. The reaction rate is almost ten times faster in SDS micellar medium compared to the aqueous medium. [Fe(CN)6]3- does not show any appreciable effect on the critical micellar concentration (CMC) of SDS as the polar head of SDS and [Fe(CN)6]3- both are negatively charged. The K+ obtained from K3[Fe(CN)6] and KNO3 decreases the repulsion between the negatively charged heads of the surfactant molecules thereby decreasing the CMC of SDS. The activation parameters also support the outer-sphere electron transfer mechanism as proposed by us.

 

Resumen. El estudio cinético de la oxidación de L-tryptofano (Trp) con [Fe(CN)6]3- asistida por Ru(III), se llevó a cabo en un medio micelar de dodecilsulfato de sodio aniónico (SDS) y se monitoreó utilizando espectrometría de UV-visible midiendo la disminución de la absorbancia a 420 nm, correspondiente al [Fe(CN)6]3-. Para examinar el avance de la reaccción se utilizaron condiciones de pseudo-primer orden en función de [Fe(CN)63−], fuerza iónica, [OH-], [SDS], [Ru3+], [Trp], y temperatura, variando siempre una sola una variable. Los resultados indican, que los parametros decisivos que tuvieron un efecto apreciable sobre la velocidad de la reacción son [OH-], [SDS], y [Trp]. La reacción sigue una cinética de primer orden en el rango de concentraciones de estudio de Ru(III), [Fe(CN)6]3− y a bajas concentraciones de [Trp] y [OH-]. La tendencia de incremento de velocidad de la reacción con aumento de la concentración del electrolito muestra un efecto salino positivo. La velocidad de la reacción en el medio micelar de SDS es casi diez veces mayor que en solución acuosa. [Fe(CN)6]3- no muestra ningún efecto appreciable en la concentración crítica micelar (CMC) de SDS debido a que el grupo polar del SDS (SO3-, cabeza) y el [Fe(CN)6]3- tienen ambos carga negativa. Los cationes K+ provenientes del K3[Fe(CN)6] y KNO3 disminuyen la repulsión entre las cabezas con cargas negativas del surfactante, bajando así la CMC del SDS. Los parámetros de activación apoyan también el mecanismo de transferencia de electrones de la esfera exterior propuesto.

Downloads

Download data is not yet available.

References

Das, B.; Kumar, B.; Begum, W. Chem. Afr. 2022, DOI: https://doi.org/10.1007/s42250-022-0345-0

Zahed, M.A.; Matinvafa, M.A.; Azari, A. Discov. Water 2022, 2, 5. DOI: https://doi.org/10.1007/s43832-022-00013-x

Chinnaraja, M.D.; Dsouza, J. SPAST Abstracts 2021, 1.

Karimi, M.A.; Mozaheb, M.A.; Hatefi-Mehrjardi, A. J. Anal. Sci. Technol. 2015, 6, 1-8. DOI: https://doi.org/10.1186/s40543-015-0077-y

Shah, S.; Chatterjee, S.K.; Bhattarai, A. J. Surfactants Deterg. 2016, 19, 201-207. DOI: https://doi.org/10.1007/s11743-015-1755-x

Motin, A.; Hafiz Mia, M.A.; Nasimul Islam, A.K.M. J. Saudi. Chem. Soc. 2015, 19, 172-180. DOI: https://doi.org/10.1016/j.jscs.2012.01.009

Mukerjee, P. J. Phys. Chem. 1972, 76, 565-570. DOI: https://doi.org/10.1021/j100648a019

Muller, N. J. Phys. Chem. 1972, 76, 3017-3020. DOI: https://doi.org/10.1021/j100665a017

Muller, N. J. Phys. Chem. 1975, 79, 287-291. DOI: https://doi.org/10.1021/j100570a019

Oakenfull, D.G.; Fendwich, D.E. J. Phys. Chem. 1974, 78, 1759-1763. DOI: https://doi.org/10.1021/j100610a018

Tanford, C. J. Phys. Chem. 1972, 76, 3020-3024. DOI: https://doi.org/10.1021/j100665a018

Paula, S.; Sues, W.; Tuchtenhagen, J.; Blume, A. J. Phys. Chem. 1995, 99, 11742-11751. DOI: https://doi.org/10.1021/J100030A019

Iioka, T.; Takahashi, S.; Yoshida, Y.; Matsumura, Y.; Hiraoka, S.; Sato, H.J. Comput. Chem. 2019, 40, 279-285. DOI: https://doi.org/10.1002/jcc.25588

Naik, R.M.; Srivastava, A.; Tiwari, A.K.; Yaday, S.B.S.; Verma, A.K. J. Iran. Chem. Soc. 2007, 4, 63–71. DOI: https://doi.org/10.1007/bf03245804

Naik, R.M.; Srivastava, A.; Verma, A K.; Yadav, S.B.S.; Singh, R.; Prasad, S. Bioinorg. Reac. Mech. 2007, 6, 185-192. DOI: https://doi.org/10.1515/irm.2007.6.3.185

Omondi, R.O.; Stephen, O.; Ojwach, S.O.; Jaganyi, D. Inorg. Chim. Acta. 2020, 512, 119883. DOI: https://doi.org/10.1016/j.ica.2020.119883

Sharma, V. Biointerface Res. App. Chem. 2022, 12, 7064–7074. DOI: https://doi.org/10.33263/briac125.70647074

Sharma, V.; Vashistha, V.K.; Das, D.K. Biointerface Res. App. Chem. 2020, 11, 7393-7399. DOI: https://doi.org/10.33263/briac111.73937399

Srivastava, A.; Naik, R.M.; Rai, J.; Asthana, A. Russ. J. Phy. Chem. 2021, 95, 2545–2552; DOI: https://doi.org/10.1134/s0036024421130227

Singh, A.; Singh, A. Prog. Reac. Kinet. Mech. 2013, 38, 105-118. DOI: https://doi.org/10.3184/146867813x13600909461700

Naik, R.M.; Tewari, R.K.; Singh, P.K.; Tiwari, A.K.; Prasad, S. Trans. Met. Chem. 2005, 30, 968–977. DOI: https://doi.org/10.1007/s11243-005-6266-6

Prasad, S.; Naik, R.M.; Srivastava, A. Spectrochim. Acta A. 2008, 70, 958-965. DOI: https://doi.org/10.1016/j.saa.2007.10.011

Srivastava, A.; Sharma, V.; Prajapati, A.; Srivastava, N.; Naik, R.M. Chem. Chem. Technol. 2019, 13, 275-279. DOI: https://doi.org/10.23939/chcht13.03.275

Srivastava, A.; Sharma, V.; Singh, V.K.; Srivastava, K. J. Mex. Chem. Soc. 2022, 66, 57-69. DOI: https://doi.org/10.29356/jmcs.v66i1.1654

Gupta, D.; Bhardwaj, S., Sethi, S., Pramanik, S.; Das, D.K.; Kumar, R.; Singh, P.P.; Vashistha, V.K. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2022, 270, 120819. DOI: https://doi.org/10.1016/j.saa.2021.120819

Vashistha, V.K.; Bhushan, R. Biomed. Chromatogr. 2019, 33, e4550. DOI: https://doi.org/10.1002/bmc.4550

Agrawal, G.P.; Maheshwari, R.K.; Mishra, P. Curr. Pharm. Anal. 2020, 16, 487-493. DOI: https://doi.org/10.2174/1573412914666181024145937

Gupta, A.; Pey, A. Ind. J. Sci. Res. 2017, 13, 66-72.

Asghar, B.H.; Altas, H.M.; Fawzi, A. J. Sau. Chem. Soc. 2007, 21, 887-898. DOI: https://doi.org/10.1016/j.jscs.2015.12.003

Pey, E.; Grover, N.; Kambo, N.; Uphadyay, S.K. Ind. J Chem. 2004, 43A, 1183-1192.

Naik, R.M.; Srivastava, A.; Verma, A.K. Turk. J. Chem. 2008, 32, 495-503. DOI: https://doi.org/10.3906/che-0612-7

Sharanabasamma, K.; Angadi, M.A.; Tuwar, S.M. Open Catal. J. 2011, 4, 1-8. DOI: https://doi.org/10.2174/1876214x01104010001

Singh, H.S.; Singh, B.; Gupta, A.; Singh, A.K. Oxid Commun. 1999, 22, 146-153.

Goel, A.; Sharma, R. J. Chem. Eng. Mater. Sci. 2012, 3, 1–6. DOI: https://doi.org/10.5897/jcems11.049

Nowdari, A.; Adari, K.K.; Gollapalli, N.R.; Parvataneni, V.E. J. Chem. 2009, 6, 93–98. doi: https://doi.org/10.1155/2009/615750

Goel, A.; Sharma, S. Trans. Met. Chem. 2010, 35, 549–554. DOI: https://doi.org/10.1007/s11243-010-9362-1

37.Bagalkoti, J.; Nibewoor, S.T. Monatsh. Chem. 2019, 150, 1469–1478. DOI: https://doi.org/10.1007/s00706-019-02482-8

Mukherjee, K.; Saha, B.J. Korean Chem. Soc. 2013, 57, 425-431. DOI: https://doi.org/10.5012/jkcs.2013.57.4.425

Zouraba, S.M.; Ezzob, E.M.; El-Ailac, H.J.; Salema, J.K.J. J. Surfactants Deterg. 2005, 8, 83-89. DOI: https://doi.org/10.1007/s11743-005-0334-6

Rastogi, R.; Srivastava, A.; Naik, R.M. J. Disp. Sci. Tech. 2020, 41, 1045-1050. DOI: https://doi.org/10.1080/01932691.2019.1614042

Srivastava, A.; Naik, R.M.; Rastogi, R. J. Iran. Chem. Soc. 2020, 17, 2327-2333. DOI: https://doi.org/10.1007/s13738-020-01927-w

Hadi, L.; Richard, A.J.O.; Gavin, E.R. J. Am. Soc. Mass Spec. 2004, 15(1), 65-76. https://doi.org/10.1016/j.jasms.2003.09.011

Domingo, P.L.; Garc, B.A.; Leal, J.M. Can. J. Chem. 1990, 68, 228-235. DOI: https://doi.org/10.1139/v90-030

Chowdhury, S.; Rakshit, A.; Acharjee, A.; Ghosh, A.; Mahali, K.; Saha, B. Tenside. Surfact. Det. 2020, 57, 298-309. DOI: https://doi.org/10.3139/113.110696

Chowdhury, S.; Rakshit, A.; Acharjee, A.; Ghosh, A.; Mahali, K.; Saha, B. J. Mol. Liq.

, 290, 111247. DOI: https://doi.org/10.1016/j.molliq.2019.111247

Graciani, M.M.; Rodríguez, M.A.; Moyá, M.L. Int. J. Chem. Kinet. 1997, 29, 377-384. DOI: https://doi.org/10.1002/(SICI)1097-4601(1997)29:5%3C377::AID-KIN8%3E3.0.CO;2-R

Harzion, Z.; Navon, G.; Inorg. Chem. 1980, 19, 2236–2239. Doi: https://doi.org/10.1021/ic50210a008

Khan, M.M.T.; Ramachandraiah, G.; Rao, A.P.; Inorg. Chem. 1986, 25, 665–670. DOI: https://doi.org/10.1021/ic00225a015

Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry- A Comprehensive Text. 6th ed. Wiley Interscience, New York, 1996.

Singh, H.S.; Singh, R.K.; Singh, S.M.; Sisodia, A.K. J. Phys. Chem. 1977, 81, 1044-1047. DOI: https://doi.org/10.1021/j100526a004

Hiremath, G.A.; Timmanagoudar, P.L.; Nandibewoor, S.T. React. Kinet. Catal. Letts. 1998, 63, 403-408. DOI: https://doi.org/10.1007/BF02475419

Kamble, D.L.; Nandibewoor, S.T. J. Phys. Org. Chem. 1998, 11, 171-176. DOI: https://doi.org/10.1002/(SICI)1099-1395(199803)11:3<171::AID-POC988>3.0.CO;2-4

Naik, R.M.; Kumar, B. J. Dis. Sci. Technol. 2012, 33, 647-653. DOI: https://doi.org/10.1080/01932691.2011.579823

Bunton, C.A.; Nome, F.; Quina, F.H.; Romsted, L.S. Acc. Chem. Res. 1991, 24, 357-364. Doi: https://doi.org/10.1021/ar00012a001

Brinchi, L.; Profio, P.D.; Germani, R.; Savelli, G.; Tugliani, M.; Bunton, C.A. Langmuir 2000, 16, 10101-10105. DOI: https://doi.org/10.1021/la000799s

Lopez-Cornejo, P.; Mozo, J.D.; Rolda, ́ N.E.; Domínguez, M.; ́ Sanchez, F. Chem. Phys. Lett. 2002, 352, 33-38. DOI: https://doi.org/10.1016/s0009-2614(01)01287-8

Piszkiewicz, D. J. Am. Chem. Soc. 1997, 99, 7695-7697; DOI: https://doi.org/10.1021/ja00465a046

Sen, P.K.; Gani, N.; Pal, B. Ind. Eng. Chem. Res. 2013, 52, 2803-2813. DOI: https://doi.org/10.1021/ie302656d

Jimenez, R.; Bueno, E.; Cano, I.; Corbacho, E. Int. J. Chem. Kinet. 2004, 26, 627-633. DOI: https://doi.org/10.1002/kin.20038

Downloads

Additional Files

Published

2023-01-06

Issue

Section

Regular Articles

Most read articles by the same author(s)