Screening Method Synthesis of AgNPs Using Petroselinum crispum (parsley) Leaf: Spectral Analysis of the Particles and Antibacterial Study

Authors

  • Shadia Hamoud Alshahrani King Khalid University
  • Ameer A. Alameri University of Babylon
  • Rahman S. Zabibah The Islamic University
  • Abduladheem Turki Jalil Jalil Al-Mustaqbal University College
  • Omid Ahmadi Sahand University of Technology
  • Gity Behbudi University of Guilan https://orcid.org/0000-0001-9422-5910

DOI:

https://doi.org/10.29356/jmcs.v66i4.1803

Keywords:

AgNPs, parsley leaf extract, screening Method, microbial activities

Abstract

Abstract. The synthesis and applications of nanomaterials are an excitingand emerging field of scientific research. In this paper, silver nanoparticles (AgNPs) were synthesized using parsley leaf extract via the screening method (autoclave hydrothermal heating, and heater), and their microbial activities were studied. An extract of chopped parsley leaves was prepared. AgNO3 salt with a concentration of 1 mM was used. In every two methods of autoclave hydrothermal heating and heater, 5 mL of the Parsley leaf extract was mixed with 25 mL of silver nitrate salt. By FTIR analysis, the presence of Petroselinum crispum (parsley) leaf extract in NPs was identified. By using a hydrothermal autoclave and heater to synthesize AgNPs at the lowest wavelength, the size of NPs was achieved at 403 nm and 414 nm, respectively. All samples synthesized by different techniques had suitable zeta potential and acceptable stability. By giving the zeta potential of NPs synthesized by autoclave (-14.3 mV), results showed that this method is suitable for the production of AgNPs. Comparing the antibacterial attributes of the synthesized Ag NPs by different techniques (autoclave and heater) on Gram-negative bacteria (E. coli) showed 16±1, and 12±1, respectively.

 

Resumen. La síntesis y las aplicaciones de los nanomateriales son un campo de investigación científica emocionante y emergente. En esta investigación, se sintetizaron nanopartículas de plata (AgNP) utilizando extracto de hoja de perejil a través del método de selección (calentamiento hidrotermal en autoclave y calentador), y se estudiaron sus actividades microbianas. Se preparó un extracto de hojas de perejil picadas. Se utilizó AgNO3 a una concentración de 1 mM y se utilizaron los métodos de calentamiento en autoclave y calentador; se mezclaron 5 mL del extracto de hoja de Perejil con 25 mL de sal de nitrato de plata. Mediante análisis FTIR se identificó la presencia de extracto de hoja de Petroselinum crispum (perejil) en NPs. El tamaño de las NP se logró a 403 nm y 414 nm, con los métodos de calentamiento en autoclave y calentador, respectivamente. Todas las muestras sintetizadas por diferentes técnicas tuvieron un potencial zeta adecuado y una estabilidad aceptable. Al dar el potencial zeta de las NP sintetizadas en autoclave (-14,3 mV), los resultados mostraron que este método es adecuado para la producción de AgNP. La comparación de los atributos antibacterianos de las AgNP sintetizadas por diferentes técnicas (autoclave y calentador) en bacterias Gram-negativas (Escherichia coli) dieron 16±1 y 12±1, respectivamente.

Downloads

Download data is not yet available.

Author Biographies

Shadia Hamoud Alshahrani, King Khalid University

Medical Surgical Nursing Department

Ameer A. Alameri, University of Babylon

Department of Chemistry

Rahman S. Zabibah, The Islamic University

Medical Laboratory Technology Department, College of Medical Technology

Abduladheem Turki Jalil Jalil, Al-Mustaqbal University College

Medical Laboratories Techniques Department

Omid Ahmadi, Sahand University of Technology

Department of Food Engineering, Faculty of Chemical Engineering

Gity Behbudi, University of Guilan

Department of Chemical Engineering

References

Golabiazar, R.; Othman, K. I.; Khalid, K. M.; Maruf, D. H.; Aulla, S. M.; Yusif, P. A. Bionanoscience. 2019, 9, 323-333. DOI: https://doi.org/10.1007/s12668-019-0606-z.

Mohammadlou, M.; Jafarizadeh-Malmiri, H.; Maghsoudi, H. Green Process. Synth. 2017, 6, 31-42. DOI: https://doi.org/10.1515/gps-2016-0075.

Kalita, N. K.; Ganguli, J. N. Inorg. Nano-Met. Chem. 2017, 47, 788-793. DOI: https://doi.org/10.1080/15533174.2016.1218506.

Ahmadi, O.; Jafarizadeh-Malmiri, H.; Jodeiri, N. Z Phys. Chem. 2019, 233, 651-667. DOI: https://doi.org/10.1515/zpch-2017-1089.

Ghaedi, M.; Yousefinejad, M.; Safarpoor, M.; Khafri, H.Z.; Purkait, M. K. J. Ind. Eng. Chem. 2015, 31, 167-172. DOI: https://doi.org/10.1016/j.jiec.2015.06.020.

Yang, W.; Zhang, H.; Liu, Y.; Tang, C.; Xu, X.; Liu, J. RSC Adv. 2022, 12, 14435-14438. DOI: 10.1039/D2RA02074B.

Torabfam, M.; Jafarizadeh-Malmiri, H. Green Process. Synth. 2018, 7, 530-537. DOI: https://doi.org/10.1515/gps-2017-0139.

Liu, G.; Nie, R.; Liu, Y.; Mehmood, A. Sci. Total Environ. 2022, 154058. DOI: https://doi.org/10.1016/j.scitotenv.2022.154058.

Chahardoli, A.; Karimi, N.; Fattahi, A. Adv. Powder Technol. 2018, 29, 202-210. DOI: https://doi.org/10.1016/j.apt.2017.11.003.

Han, M.C.; He, H.W.; Kong, W.K.; Dong, K.; Wang, B.Y.; Yan, X.; Wang, L. M; Ning, X. Fibers Polym. 2022, 1-9. DOI: https://doi.org/10.1007/s12221-022-4786-8.

Han, M. C.; Cai, S. Z.; Wang, J.; He, H. W. Polym. 2022, 14, 2952. DOI: https://doi.org/10.3390/polym14142952

Eshghi, M.; Vaghari, H.; Najian, Y.; Najian, M.J.; Jafarizadeh-Malmiri, H.; Berenjian, A. Antibiotics. 2018, 7, 68. DOI: https://doi.org/10.3390/antibiotics7030068.

Umair, M.; Jabbar, S.; Zhaoxin, L.; Jianhao, Z.; Abid, M.; Khan, K. U.; Korma, S. A.; Alghamdi, M. A.; El-Saadony, M. T.; El-Hack, A.; Cacciotti, I. Front. Microbiol. 2022, 13, 876058. DOI: https://doi.org/10.3389/fmicb.2022.876058.

Khan, A.; Fiaz, M.; Khan, J. B.; Khan, A.; ul Wahab, Z. Sci. Herit. J. 2018, 2, 1-3. DOI: 10.26480/gws.01.2018.01.03.

Balamurugan, M.; Saravanan, S. J. Inst. Eng. (India): A. 2017, 98, 461-467. DOI: https://doi.org/10.1007/s40030-017-0236-9

Gomathi, M.; Prakasam, A.; Rajkumar, P. V. J. Clust. Sci. 2019, 30, 995-1001. DOI: https://doi.org/10.1007/s10876-019-01559-y

Vijayan, R.; Joseph, S.; Mathew, B. Artif. Cells Nanomed. Biotechnol. 2018, 46, 861-871. DOI: https://doi.org/10.1080/21691401.2017.1345930

Ahmadi, O.; Jafarizadeh-Malmiri, H.; Jodeiri, N. Green Process. Synth. 2018, 7, 231-240. DOI: https://doi.org/10.1515/gps-2017-0039.

Wu, Z.; Li, C.; Zhang, F.; Huang, S.; Wang, F.; Wang, X.; Jiao, H. J. Mater. Chem. 2022, 10, 7443-7448. DOI: https://doi.org/10.1039/D2TC00850E.

Ghanbari, S.; Vaghari, H.; Sayyar, Z.; Adibpour, M.; Jafarizadeh-Malmiri, H. Green Process. Synth. 2018, 7, 217-224. DOI: https://doi.org/10.1515/gps-2017-0062.

Li, K.; Ma, C.; Jian, T.; Sun, H.; Wang, L.; Xu, H.; Li, W.; Su, H.; Cheng, X. J. Food Sci. Technol. 2017, 54, 3569-3576. DOI: https://doi.org/10.1007/s13197-017-2815-1

Balan, K.; Qing, W.; Wang, Y.; Liu, X.; Palvannan, T.; Wang, Y.; Ma, F.; Zhang, Y. RSC Adv. 2016, 6, 40162-40168. DOI: https://doi.org/10.1039/C5RA24391B.

Rahman, A. S.; Kahar, A. A.; Mansor, A.; Murni, D.L.; Hussin, A.; Sharifudin, A. S.; Hun, T. G.; Rashid, A. N. Y.; Othaman, M. A.; Long, K. GWS. 2017, 1, 01-03. DOI: 10.26480/gws.01.2017.01.03

Mohammadlou, M.; Maghsoudi, H.; Jafarizadeh-Malmiri, H.J.I.F.R.J. Int. Food Res. J. 2016, 23, 446.

Said, M. I; Othman, A. A. Mater. Res. Express. 2019, 6, 055029.

Asghar, M. A.; Zahir, E.; Shahid, S. M.; Khan, M. N.; Asghar, M. A.; Iqbal, J.; Walker, G. Lwt. 2018, 90, 98-107. DOI: https://doi.org/10.1016/j.lwt.2017.12.009.

Sánchez, G. R.; Castilla, C. L.; Gómez, N. B.; García, A.; Marcos, R.; Carmona, E. R. Mater. Lett. 2016, 183, 255-260. DOI: https://doi.org/10.1016/j.matlet.2016.07.115.

Li, T.; Pang, H.; Wu, Q.; Huang, M.; Xu, J.; Zheng, L.; Wang, B.; Qiao, Y. Int. J. Mol. Sci. 2022, 23, 6259. DOI: https://doi.org/10.3390/ijms23116259.

Saravanakumar, A.; Peng, M. M.; Ganesh, M.; Jayaprakash, J.; Mohankumar, M.; Jang, H. T. Artif Cells Nanomed. Biotechno.l 2017, 45, 1165-1171. DOI: https://doi.org/10.1080/21691401.2016.1203795.

Sayyar, Z.; Malmiri, H. J. Z. Kristallogr. Cryst..Mater. 2019, 234, 307-328. DOI: 10.1515/zkri-2018-2096.

Ulug, B.; Turkdemir, M. H.; Cicek, A.; Mete, A. Spectrochim. Acta A Mol. Biomol. 2015, 135, 153-161. DOI: https://doi.org/10.1016/j.saa.2014.06.142.

Francis, S.; Joseph, S.; Koshy, E.P.; Mathew, B. Artif Cells Nanomed. Biotechnol. 2018., 46, 795-804. DOI: https://doi.org/10.1080/21691401.2017.1345921.

Jain, S.; Mehata, M. S. Sci. Rep. 2017, 7, 1-13. DOI: https://doi.org/10.1038/s41598-017-15724-8.

Anandalakshmi, K.; Venugobal, J.; Ramasamy, V. Appl. Nanosci. 2016, 6, 399-408. DOI:

https://doi.org/10.1007/s13204-015-0449-z.

Ratih, D. N.; Enggardipta, R. A.; Kartikaningtyas, A. T. Open Dent. J. 2020, 14. DOI: DOI: 10.2174/1874210602014010019.

Vahidi, A.; Vaghari, H.; Najian, Y.; Najian, M.J.; Jafarizadeh-Malmiri, H. Green Process. Synth. 2019, 8, 302-308. DOI: https://doi.org/10.1515/gps-2018-0097

Eskandari-Nojehdehi, M.; Jafarizadeh-Malmiri, H.; Rahbar-Shahrouzi, J. Nanotechnol. Rev. 2016, 5, 537-548. DOI: https://doi.org/10.1515/ntrev-2016-0064.

Fardsadegh, B.; Jafarizadeh-Malmiri, H. Green Process. Synth. 2019, 8, 399-407. DOI: https://doi.org/10.1515/gps-2019-0007.

Downloads

Published

2022-10-01

Issue

Section

Regular Articles