DFT Study of the Molecular Structure, Conformational Preference, Spectroscopic and Vibrational Analysis of Cinnamic Acid and Cinnamaldehyde

Authors

DOI:

https://doi.org/10.29356/jmcs.v66i4.1757

Keywords:

Cinnamic acid, cinnamaldehyde, conformational preference, solvent effect, vibrational analysis

Abstract

Abstract. B3YLP with the 6-311++G (d, p) basis set was used to investigate the conformational preference, geometrical structure, and spectroscopic properties of the conformational isomers of cinnamic acid and cinnamaldehyde in gas and in solvents. In the gas phase, the s-cis isomer of cinnamic acid was found to be more stable than the s-trans conformer, while for cinnamaldehyde the s-trans conformer was found to be the more stable conformer. The effects of solvents on the conformational preference of these molecules were investigated using the IEF-PCM model. For both cinnamic acid and cinnamaldehyde, the solvent has shown no significant effect on the stability preference. However, the stability of both conformational isomers of cinnamic acid and cinnamaldehyde increases as the dielectric constant of solvent increases, because solvation energies decrease as the dielectric constant of the solvent increases. The 13C and 1H NMR chemical shifts were calculated in DMSO and chloroform. The NBO charges and the UV-visible spectra have been computed in the gas phase, chloroform, methanol, and water.

 

Resumen. Se utilizó B3YLP con el conjunto de base 6-311++G (d, p) para investigar la preferencia conformacional, la estructura y las propiedades espectroscópicas de los isómeros conformacionales de ácido cinámico y cinamaldehído en fase gas y en solventes. En la fase gaseosa, se encontró que el isómero s-cis del ácido cinámico era más estable que el confórmero s-trans, mientras que para el cinamaldehído se encontró que el confórmero s-trans era el más estable. Los efectos de disolvente sobre la preferencia conformacional de estas moléculas se investigaron utilizando el modelo IEF-PCM. Tanto para el ácido cinámico como para el cinamaldehído, el disolvente no mostró ningún efecto significativo sobre la preferencia de estabilidad. Sin embargo, la estabilidad de ambos isómeros conformacionales de ácido cinámico y cinamaldehído aumenta a medida que aumenta la constante dieléctrica del disolvente, porque las energías de solvatación disminuyen a medida que aumenta la constante dieléctrica del disolvente. Los corrimientos químicos de RMN de 13C y 1H se calcularon en DMSO y cloroformo. Las cargas NBO y los espectros UV-visibles se han calculado en la fase gaseosa, cloroformo, metanol y agua.

Downloads

Download data is not yet available.

Author Biographies

Fatima Fadl, University of Khartoum

Department of Chemistry, Faculty of Science

Sahar Abdalla, University of Khartoum

Department of Chemistry, Faculty of Science

Abdurrahman Ishaq, Prince Mohammad Bin Fahd University

Department of Mathematics and Natural Sciences

Yunusa Umar, Jubail Industrial College

Department of Chemical and Process Engineering Technology

References

Li, Y.; Kong, D.; Wu, H. Ind. Crop. Prod. 2013, 41, 269–278. DOI: https://doi.org/10.1016/j.indcrop.2012.04.056.

Hoskins, J. A. J. Appl. Toxicol. 1984, 4, 283–292. DOI: https://doi.org/10.1002/jat.2550040602.

Gende, L., Floris, I., Fritz, R., Eguaras, M. Bulletin of Insectology. 2008, 61, 1-4,

Bickers, D.; Calow, P.; Greim, H.; Hanifin, J. M.; Rogers, A. E.; Saurat, J. H.; Sipes, I. G.; Smith, R. L.; Tagami, H. Food Chem. Toxicol. 2005, 43, 799–836. DOI: https://doi.org/10.1016/j.fct.2004.09.013.

Liu, L.; Hudgins, W. R.; Shack, S.; Yin, M. Q.; Samid, D. Int. J. Cancer. 1995, 62, 345–350. DOI: https://doi.org/10.1002/ijc.2910620319.

Dhara, L.; Tripathi, A. Eur. J. Clin. Microbiol. Infect. Dis. 2019. DOI: https://doi.org/10.1007/s10096-019-03692-y.

Dhara, L.; Tripathi, A. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 65–73. DOI: 10.1007/s12223-020-00806-4.

Tripathy, M. IJPSR. 2017, 8, 2333–2340. DOI: https://doi.org/10.13040/IJPSR.0975-8232.8(6).2333-40.

Hoi, J. K.; Lieder, B.; Pignitter, M.; Hans, J.; Ley, P.; Lietard, J.; Hölz, K.; Somoza, M. M.; Somoza, V. J. Agric. Food Chem. 2019, 67, 11638–11649. DOI: https://doi.org/10.1021/acs.jafc.9b04274.

Joint, F. A. O.; Additives, W. H. O. E. C. on F.; Organization, W. H. Evaluation of Certain Food Additives and Contaminants: Fifty-Fifth Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization, 2001.

Burdock, G. A. Fenaroli’s, In: Flavor Ingredients: Vol. 2; CRC press, 2019.

Lamb, C. J.; Rubery, P. H. Anal. Biochem. 1975, 68, 554–561. DOI: https://doi.org/10.1016/0003-2697(75)90651-X.

Hsieh, T.-J.; Su, C.-C.; Chen, C.-Y.; Liou, C.-H.; Lu, L.-H. J. Mol. Struct. 2005, 741, 193–199. DOI: https://doi.org/10.1016/j.molstruc.2005.02.009.

Kalinowska, M.; Świsłocka, R.; Lewandowski, W. J. Mol. Struct. 2007, 834–836, 572–580. DOI: https://doi.org/10.1016/j.molstruc.2006.11.043.

Vinod, K. S.; Periandy, S.; Govindarajan, M. Spectrochim. Acta Part A. Mol. Biomol. Spectrosc. 2014, DOI: https://doi.org/10.1016/j.saa.2014.09.098.

Sirichote, O.; Hansongnern, K.; Yaochuang, Y.; Jantaraprim, C. J. Sci. Soc. Thailand. 1996, 333–342. DOI: 10.2306/scienceasia1513-1874.1996.22.333.

Al-bayati, F. A.; Mohammed, M. J.; Al-bayati, F. A.; Mohammed, M. J. Pharm. Biol. 2009, 0209. DOI: https://doi.org/10.1080/13880200802430607.

Al-Bayati, F. A.; Mohammed, M. J. Pharm. Biol. 2009, 47, 61–66. DOI: https://doi.org/10.1080/13880200802430607.

Hoi, J. K.; Lieder, B.; Pignitter, M.; Hans, J.; Ley, J. P.; Lietard, J.; Hoelz, K.; Somoza, M.; Somoza, V. J. Agric. Food Chem. 2019, 67, 11638–11649. DOI: 10.1021/acs.jafc.9b04274.

Vinod, K. S.; Periandy, S.; Govindarajan, M. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 808–817. DOI: https://doi.org/10.1016/j.saa.2014.09.098.

Liang, Q.; Chai, K.; Lu, K.; Xu, Z.; Li, G.; Tong, Z.; Ji, H. RSC Adv. 2017, 7, 43502–43511. DOI: https://doi.org/10.1039/c7ra07813g.

Yu, C.; Li, Y.-L.; Liang, M.; Dai, S.-Y.; Ma, L.; Li, W.-G.; Lai, F.; Liu, X.-M. RSC Adv. 2020, 10, 19124–19133. DOI: DOI: 10.1039/c9ra10820c.

Umar, Y.; Abdalla, S. J. Solution Chem. 2017, 46, 741–758. DOI: https://doi.org/10.1007/s10953-017-0601-3.

Umar, Y.; Tijani, J.; Abdalla, S. J. Struct. Chem. 2016, 57, 1545–1553. DOI: https://doi.org/10.1134/S0022476616080084.

Umar, Y.; Tijani, J. J. Struct. Chem. 2015, 56, 1305–1312. DOI: https://doi.org/10.1134/S0022476615070112.

Gaussian 09, R. A. 1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al., Gaussian. Inc., Wallingford CT, 2009.

Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652. DOI: https://doi.org/10.1063/1.464913.

Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B. 1988, 37, 785. DOI: https://doi.org/10.1103/PhysRevB.37.785.

Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. J. Phys. Chem. A. 2007, 111, 10439–10452. DOI: https://doi.org/10.1021/jp0734474.

Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, 2016, Version 6.0. 16. Semichem Inc Shawnee Mission KS.

Umar, Y. J. Mol. Struct. 2022, 1264, 133230. DOI: https://doi.org/https://doi.org/10.1016/j.molstruc.2022.133230.

Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027–2094. DOI: https://doi.org/10.1021/cr00031a013.

Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999–3094. DOI: https://doi.org/10.1021/cr9904009.

Cances, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032–3041. DOI: https://doi.org/10.1063/1.474659.

Mennucci, B.; Cances, E.; Tomasi, J. J. Phys. Chem. B. 1997, 101, 10506–10517. DOI: https://doi.org/10.1021/jp971959k.

Miertuš, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117–129. DOI: https://doi.org/10.1016/0301-0104(81)85090-2.

Cammi, R.; Tomasi, J. J. Comput. Chem. 1995, 16, 1449–1458. DOI: https://doi.org/10.1002/jcc.540161202.

Cancès, E.; Mennucci, B. J. Math. Chem. 1998, 23, 309–326. DOI: https://doi.org/10.1023/A:1019133611148.

Jamroz, M. H. Vibrational Energy Distribution Analysis VEDA 4, Warsaw Poland, 2004.

Jamróz, M. H. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 114, 220–230. DOI: https://doi.org/10.1016/j.saa.2013.05.096.

Alagona, G.; Ghio, C.; Nagy, P. I. Int. J. Quantum Chem. 2004, 99, 161–178. DOI: https://doi.org/10.1002/qua.20117.

http://sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and Technology), accessed on 14th July 2015.

Socrates, G. Infrared and Raman Characteristic Group Frequencies, Engl. John Wiley & Sons Ltd, 2001.

Booth, H.; Silverstein, R.M.; Bassler, G. C.; Morrill, T. C. Magn. Reson. Chem. 1992, 30, 364. DOI: https://doi.org/10.1002/mrc.1260300417.

Kalsi, P. S., in: Spectroscopy of Organic Compounds 6th Edition. New Dalhi, India New age Int. Publ. 2004.

Umar, Y.; Abdalla, S.; Haque, S. K. M.; Moran, G. S.; Ishaq, A.; Villada, W. C.; Leone, J. D.; Bunster, M. J. Chin. Chem. Soc. 2020, 67, 62–71. DOI: https://doi.org/10.1002/jccs.201900051.

Umar, Y. Arab. J. Sci. Eng. 2021, 1–12. DOI: https://doi.org/10.1007/s13369-021-05791-5.

Abdalla, S.; Springborg, M. Comput. Theor. Chem. 2011, 978, 143–151. DOI: https://doi.org/10.1016/j.comptc.2011.10.007.

Umar, Y.; Parlak, C.; Haque, S. K. M.; Appu, S. P.; Ashwaq, O.; Ramasami, P. J. Indian Chem. Soc. 2021, 98, 100032. DOI: https://doi.org/10.1016/j.jics.2021.100032.

Abdalla, S.; Umar, Y.; Mokhtar, I. Z. Phys. Chem. 2016, 230. DOI: https://doi.org/10.1515/zpch-2015-0700.

Abdalla, S.; Springborg, M. J. Phys. Chem. A. 2010, 114, 5823–5829. DOI: https://doi.org/10.1021/jp9102096.

Umar, Y. IOSR J. Appl. Chem. 2015, 8, 44–55.

Downloads

Additional Files

Published

2022-10-05

Issue

Section

Regular Articles