Characterization of Some Co-Fired Agricultural by-products for Energetic Use
DOI:
https://doi.org/10.29356/jmcs.v66i4.1739Keywords:
Cofiring, pellets, agricultural wastes, calorific value, proximate analysisAbstract
Abstract. The aim of the present study is obtaining the calorific values and the qualitative properties of the pellets made from four agricultural by-products co-fired with coal and non-cofired, in order to highlight the importance of co-fired biomass as alternative energy source. The studied samples are coarse ground grist of sorghum seeds, rape seeds, soyabean, sunflower seeds and their mixture with coal. The following parameters are calculated: higher heating values, bulk densities, energy densities, fuel value index, nitrogen and sulphur content. The proximate composition as defined by ASTM was established: moisture, ash, volatile matter, and fixed carbon. The moisture and ash content of the studied agricultural by-products are identified as the main factors of calorific influence. The obtained results come to confirm the ability of co-fired biomass to be used as fuel. As resulted from the experimental data, the co-fired biomass of agricultural residues are good resources as biofuel in the form of pellets. Among the studied samples, co-fired sunflower seeds grist presents the highest heating value, highest fixed carbon content and fuel value index, thus being a good alternative to fossil fuel in order to produce energy and reduce the domestic air pollution and the amount of wood needed.
Resumen. El objetivo del presente estudio es obtener los valores de poderes caloríficos y las propiedades cualitativas de pellets elaborados a partir de cuatro subproductos agrícolas en co-combustión con carbón y sin co-combustión. Esto se realizó con la finalidad de resaltar la importancia de la biomasa en co-combustión como fuente de energía alternativa. Las muestras estudiadas son: molienda gruesa de semillas de sorgo, colza, soja, semillas de girasol y sus mezclas con carbón. Se calcularon los siguientes parámetros: poderes caloríficos superiores, densidades aparentes, densidades energéticas, índice de valor del combustible, contenido de nitrógeno y azufre. Se estableció la composición proximal definida por ASTM: humedad, ceniza, materia volátil y carbón fijo. El contenido de humedad y cenizas de los subproductos agrícolas estudiados se identifican como los principales factores de influencia calorífica. Los resultados obtenidos vienen a confirmar la capacidad de la biomasa de co-combustión para ser utilizada como combustible. Como resultado de los datos experimentales, la biomasa co-quemada de residuos agrícolas es un buen recurso como biocombustible en forma de gránulos. Entre las muestras estudiadas, la molienda de semillas de girasol cocida presenta el valor calorífico más alto, el contenido de carbono fijo y el índice de valor de combustible más altos, por lo que es una buena alternativa al combustible fósil para producir energía y reducir la contaminación del aire doméstico y la cantidad de madera necesaria.
Downloads
References
Europaisches Komitee fur Normung, 2010. ( https://www.wikiwand.com/de/Europ%C3%A4isches_Komitee_f%C3%BCr_Normung), accessed in June 2022.
Obi, F. O.; Uguruishiwu, B. O.; Nwakaire, J. N. Nig. J. Technol. 2016, 35, 957-964.
http://bioconsortium.eu accessed in June 2022.
Pasculea M. Annal. Univ. Apulensis: Series Oeconomica 2015, 17, 39-45.
Scarlat, N.; Blujdea, V.; Dallemand, J. F. Biomass Bioenerg. 2011, 35, 1995-2005.
Buzdugan, R.; Tripsa, I. The Monograph. 2006, 1-60.
Ciubota Rosie, C.; Gavrilescu, M.; Macoveanu, M. Environment. Eng. Manag. J. 2008, 7, 559-568.
Surca, E. ICEADR Bucharest, Romania, 2017, MPRA paper no.85206, https://mpra.ub.uni-muenchen.de/85206/, accessed in June 2022.
Velcescu, B.; Staicu, M. Intl. Forum-Sec. Ed. Bioenergy in EU Countries-Current Status and Future Trends, Cluj Napoca, Romania, USAMV, 2011.
Jansone, I.; Gaile, Z. Res. Rural Dev. 2015, 1, 40-44.
Kolodziej, J.; Przybylak, W. M.; Mankowski, J.; Grabowska, L. Renewable Energy and Energy Efficiency, 2012, 163-166 https://llufb.llu.lv/conference/Renewable_energy_energy_efficiency/Latvia_Univ_Agriculture_REEE_conference_2012-163-166.pdf, accessed in May 2022.
Stolarski, M. J.; Krzyzaniak, M.; Snieg, M.; Slominska, E.; Piorkowski, M.; Filipkowski, R. Int. Agrophys. 2014, 28, 201-211.
Hughes, E. E.; Tilmann, D. A. Fuel Process Technol. 1998, 54, 127-42.
Hamzah, N.; Zandi, M.; Tokimatsu, K.; Yoshikawa, K. Intl. J. Renew. Energ. S. 2018, 3, 32-40.
Smaga, M.; Wielgosiński, G.; Kochański, A.; Korczak, K. Acta Innovations. 2018, 26, 81-92.
Figueroa-Rodriguez, K. A.; Hernandez-Rosas, F.; Figueroa-Sandoval, B.; Velasco, J.; Aguilar Rivera, N. Intl. J. Environm. Res. Public Health.2019,16, 3326-3335.
Dellarose Boer, F.; Valette, J.; Commandre, J. M.; Fournier, M.; Thevenon, M. F. J. Renewable Mat. 2021, 9, 97-117.
Anukam, A.; Mamphweli, S.; Reddy, P.; Meyer, E.; Okoh, O. Renew. Sustainable Energ. Rev. 2016, 66, 775-801.
Mortari, D. A.; Torquato, L. D. M.; Crespi, M. S.; Crnkovic, P. M. J. Th. Anal. Cal. 2018, 132, 1333-1345.
Munir, S.; Nimmo, W.; Gibbs, B. M. Energy Fuels. 2010, 24, 2146-2153.
Truong, H.; Duong, H. M.; Anh, H. Renew. Sust. Energ. Rev. 2022, 154, 1-12.
Riaza, J.; Alvarez, L.; Gil, M.V.; Pevida, C.; Pis, J.J.; Rubiera, F. Energy Proced. 2013, 37, 1405-1412.
IEA Bioenergy Task 32 (2009a), Database of Biomass Co-firing Initiatives, available at: http://www.ieabcc.nl/database/cofiring.html, accessed in June 2022.
DENA, Die Mitverbrennung holzartiger Biomasse in Kohlekraftwerken. Ein Beitrag zur Energiewende und Klimaschutz, 2011, Berlin. (https://www.dena.de/fileadmin/dena/Dokumente/Pdf/9086_Studie_Die_Mitverbrennung_holzartiger_Biomasse_Kohlekraftwerken.pdf), accesed in June 2022.
Biomass Co-firing Technology Brief, 2013, IEA-ETSAP and IRENA Technology Brief, www.etsap.org-www.irena.org, accessed in June 2022.
Muntean, I.; Titei, V.; Gudima, A.; Armas, A.; Gadibadi, M. Sci. Papers. Agronomy. A. 2018, LXI, 1-10.
https://ro.wikipedia.org/wiki/Sorghum_bicolor accessed in May 2022.
17. Drożyner, P.; Rejmer, W.; Starowicz,P.; Klasa, A.; Skibniewska, K.A. Tech .Sci. 2013, 16, 211–220.
Rai, F.S.K.N.; Reddy, B.V.S.; Diwakar, B. Intl. Crops Res. Inst. for the Semi-Arid Tropics. 1997.
Almodares, A.; Hadi, M.R. J. Agric. Res. 2009, 4, 772-780.
Popescu, A. Sci. P. Ser. Manage., Econ. Eng. Agr. Rural Dev. 2020, 20, 455-466.
Robu, A.D.; Robu, T. Lucrări Ştiinţifice seria Agronomie. 2010, 53, 423-426.
Perlack, D.; Wright, L.; Turhollow, A.; Graham, R.; Stokes, B.; Erbach, D. A. Joint Study Sponsored by U.S. Department of Energy and U.S. Department of Agriculture. 2005. https://www.researchgate.net/publication/235205302_Biomass_as_Feedstock_for_A_Bioenergy_and_Bioproducts_Industry_The_Technical_Feasibility_of_a_Billion-Ton_Annual_Supply, Available at http://www.osti.gov/bridge, accessed in June 2022.
Dinu, T.; Badiu, A. F.; Stoian, E.; Vlad, I. M.; Popescu, A.; Ştefan, M. AgroLife Sci. J. 2017, 6, 92-97.
https://www.feednavigator.com/Article/2021/06/03/Romania-set-for-increased-soybean-production, accessed in June 2022.
National Institute of Statistics, 2020. Vegetal production for main crops, during 2019. National Institute of Statistics Publishing House, ISSN 2066-4117. https://insse.ro
Dima, D.C. Agric. Agric. Sci. Proc. 2015, 6, 3-8.
Santibanez, C.; Urrutia, M. Front. Bioener. Biofuels. 2017, Ch.23, 465-481.
Kaliyan, N.; Morey, R.V. Biomass Bioenerg. 2009, 33, 337-359.
www.parrinst.com/Bulletin 2811 Pellet Press, accessed in June 2022.
ASTM D5865, Standard Test Method for Gross Calorific Value of Coal and Coke. 2013, www.astm.org, accessed in June 2022.
Parr Instrument Company, 6200 Isoperibol Calorimeter, 2014, http://www.parrinst.com/products/oxygenbomb-calorimeters/6200isoperibolcalorimeter, accessed in June 2022.
Cioabla, A. E.; Pop, N.; Tordai, G. T.; Calinoiu, D. G. J. Therm. Anal. Calorim. 2016. DOI 10.1007/s10973-016-5637-x
Gheorghe, D.; Neacsu, A. Rev. Roum. Chim. 2019, 64, 633-639.
Neacsu, A.; Gheorghe, D. Rev. Roum. Chim. 2021, 66, 321-329.
Parr Analytical Methods for Oxygen Bombs No 207M, accessed in June 2022.
EN14775:2009, Parr instrument TechNote, accessed in June 2022.
Ivanova, T.; Muntean, A.; Titei, V.; Havrland, B.; Kolarikova, M. Agronomy Res. 2015, 13, 311-317.
Gendek, A.; Aniszewska, M.; Malatak, J.; Velebil, J. Biomass Bioenerg. 2018, 117, 173-179.
Onukak, I. E.; Mohammed-Dabo, I.A.; Ameh, A. O.; Okoduwa, I.D.S.I.R.; Fasanya, O.O. Recycling. 2017, 2, 1-19.
Ivanova, T.; Muntean, A.; Havrland, B.; Hutla, P. BIO Web of Conferences 10. 2018, Contemporary Research Trends in Agricultural, Engineering. DOI: https://doi.org/10.1051/bioconf/20181002007, accessed in May 2022
Vijayanand, C.; Kamaraj, S.; Karthikeyan, S.; Sriramajayam, S. Intl. J. Agric. Sci. 2016, 8, 2124-2127.
Lunguleasa, A.; Dobrev, T.; Fotin, A. Pro Ligno. 2015, 11, 686-691.
Sadiku, N. A.; Oluyege, A. O.; Sadiku, I. B. Lignocellulose. 2016, 5, 34-49.
Deka, D.; Saikia, P.; Konwer, D. Energy sources. 2007, 29, 1499-1506.
Hăbăşescu, I. Akademos. 2011, 2, 82-86.
Demirbas A. Energy Sources. 2007, 29, 549-561.
Sadaka, S.; Johnson, D. M. Technical Report. 2010.
Kára, J.; Strašil, Z.; Hutla, P.; Usťak, S. Energy crops. Technology for growing and use. 2005. Research Institute of Agricultural Engineering, Prague.
Almodares, A.; Jafarinia, M.; Hadi, M.R. Am. Eurasian J. Agric. Environ. Sci. 2009, 6, 441-446.
Gaffney, J. S.; Marley, N. A., in: Chemistry of Environmental Systems: Fundamental Principles and Analytical Methods 2019, Wiley & Sons, 312.
Natarajan, E.; Nordin, A.; Rao, A.N. Biomass Bioenerg. 1998, 14, 533-546.
Mierzwa-Hersztek, M.; Gondek, K.; Jewiarz, M.; Dziedzic, K. J. Mater. Cycles. 2019, 21, 786-800.
Nielsen, N. P. K.; Gardner, D. J.; Poulsen, T.; Felby, C. Wood Fiber Sci.2009, 41, 414-425.
Demirbas, A. Energ. Convers. Manage. 2003, 44, 1465-1479.
Loo, S.V.; Koppejan, J. The handbook of biomass combustion and co-firing. 2008, Earthscan, London, Sterling, VA.
Couto, L.; Müller, M. D.; Silva júnior, A. G.; Conde, L. J. N. Biomass. Energ. 2004, 1, 45-52.
Paula, L. E. R.; Trugilho, P. F.; Rezende, R. N.; Assis, C. O.; Baliza, A. E. R. Pesquisa Florestal Brasileira.2011, 31, 103-112.
ASTM method D3172-07a. American Society for Testing and Materials. 2013, 492-493.
Komlajeva, L.; Adamovičs, A.; Poiša, L. Renew. Energ Energ. Effic. 2012, 45-50.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Ana Neacsu, Daniela Gheorghe
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.