Enzyme Inhibitory and Mutagenicity Guided Investigation of Selected Medicinal Plants in Different Solvents

Authors

  • Javaria Hafeez University of Agriculture
  • Fatma Hussain University of Agriculture
  • Muhammad Shahid University of Agriculture
  • Aysha Sameen University of Agriculture

DOI:

https://doi.org/10.29356/jmcs.v66i3.1721

Keywords:

Alpha glucosidase, acetylcholinesterase, solvent fractions , mutagenicity

Abstract

Abstract. Plants have developed the foundation of traditional systems of medicine that have been in existence for thousands of years due to the presence of vital bioactive constitutes. Aside from antioxidant, antimicrobial, hypoglycemic, anticarcinogenic and numerous activities of natural products, limited recognition regarding diverse therapeutic attributes of medicinal plants such as Momordica charantia, Syzygium cumini, Zingiber officinale and Parthenium hysterophorus exist. The current study was designed to explore the enzyme inhibitory (alpha glucosidase and acetylcholinesterase) and cytotoxicity capacities of solvent fractions of these indigenous plants. All the samples had inhibitory effects on alpha glucosidase, but methanolic fractionations of each plant exhibited greater inhibitory efficacy against enzyme action compared to other fractionations. Except for the methanolic extract of Parthenium hysterophorus (33.25 ± 0.43), all other studied plants, viz. Zingiber officinale (50.33 ± 0.99), S. cumini (73.91 ± 1.05) and Momordica charantia (72.30 ± 1.17) indicated more than 50% alpha glucosidase inhibitory potentials. Acetylcholinesterase inhibitions (percentage inhibition) by different fractions of P. hysterophorus, Z. officinale, S. cumini and M. charantia were in the range of 0.23 ± 0.14 to 11.40 ± 0.26, 13.04 ± 0.11 to 44.05 ± 0.76, 4.21 ± 0.15 to 71.55 ± 0.80 and 1.03 ± 0.09 to 50.12 ± 0.82 respectively. Among all studied plants, Momordica charantia, Syzygium cumini, and Zingiber officinale were non-mutagenic. Although slight variation in bioactivities was observed, all the botanical extracts are excellent sources of bioactive constituents with the potential to inhibit alpha glucosidase and acetylcholinesterase. Further research in this regard is warranted involving bioassay-guided assessment.

 

Resumen. Las plantas han desarrollado la base de los sistemas tradicionales de medicina que existen desde hace miles de años debido a la presencia de constituyentes bioactivos vitales. Además de las numerosas actividades antioxidantes, antimicrobianas, hipoglucemiantes, anticancerígenas y de los productos naturales, existe un reconocimiento limitado con respecto a los diversos atributos terapéuticos de las plantas medicinales como Momordica charantia, Syzygium cumini, Zingiber officinale y Parthenium hysterophorus. El estudio actual fue diseñado para explorar las capacidades inhibidoras de enzimas (alfa glucosidasa y acetilcolinesterasa) y citotóxicas de las fracciones solventes de estas plantas autóctonas. Todas las muestras tuvieron efectos inhibidores sobre la alfa glucosidasa, pero los fraccionamientos metanólicos de cada planta exhibieron una mayor eficacia inhibidora contra la acción enzimática en comparación con otros fraccionamientos. A excepción del extracto metanólico de Parthenium hysterophorus (33,25 ± 0,43), todas las demás plantas estudiadas, a saber. Zingiber officinale (50,33 ± 0,99), S. cumini (73,91 ± 1,05) y Momordica charantia (72,30 ± 1,17) indicaron más del 50 % de potenciales inhibidores de la alfa glucosidasa. Las inhibiciones de acetilcolinesterasa (porcentaje de inhibición) por diferentes fracciones de P. hysterophorus, Z. officinale, S. cumini y M. charantia estuvieron en el rango de 0,23 ± 0,14 a 11,40 ± 0,26, 13,04 ± 0,11 a 44,05 ± 0,76, 4,21 ± 0,15 a 71,55 ± 0,80 y 1,03 ± 0,09 a 50,12 ± 0,82 respectivamente. Entre todas las plantas estudiadas, Momordica charantia, Syzygium cumini y Zingiber officinale no fueron mutagénicas. Aunque se observó una ligera variación en las bioactividades, todos los extractos botánicos son excelentes fuentes de constituyentes bioactivos con el potencial de inhibir la alfa glucosidasa y la acetilcolinesterasa. Se justifica una mayor investigación a este respecto que involucre una evaluación guiada por bioensayo.

Downloads

Download data is not yet available.

Author Biographies

Javaria Hafeez, University of Agriculture

Department of Biochemistry

Fatma Hussain, University of Agriculture

Department of Biochemistry, Faculty of Sciences

Muhammad Shahid, University of Agriculture

Department of Biochemistry, Faculty of Sciences

Aysha Sameen, University of Agriculture

National Institute of Food Science and Technology

References

Anand, U.; Tudu, C.K.; Nandy, S.; Sunita, K.; Tripathi, V.; Loake, G.J.; Dey, A.; Proćków. J Ethnopharmacol. 2022, 284, 114744. DOI: https://doi.org/10.1016/j.jep.2021.114744

Ajayi, E. I. O.; Modo, E.U.; Kiakubu, O.T.; Molehin, O.R. Diabetes, 2019, 5, 545-558. DOI: https://doi.org/10.1016/B978-0-12-813822-9.00035-7

Vinayagam, R.; Xiao, J., Xu, B. Phytochem. Rev. 2017, 16, 535-553. DOI: https://doi.org/10.1007/s11101-017-9496-2

Rahman, M.; Uddin, M.; Reza, A.S.M.; Tareq, A.M.; Emran, T.B.; Simal-Gandara, J. Plants. 2021, 10(4), 729. DOI: https://doi.org/10.3390/plants10040729

Arya, A.; Abdullah, M.A.; Haerian, B.S.; Mohd, M.A. J. Chem. 2012, 9, 1196-1205.

Hussain, F.; Shahid, M.; Zulfiqar, S.; Hafeez, J. J Mex Chem Soc. 2021, 6, 469-479. DOI: http://dx.doi.org/10.29356/jmcs.v65i4.1532

Alu’datt, M. H.; Rababah, T.; Alhamad, M.N.; Gammoh, S., Ereifej, K.; Johargy, A.; Kubow, S.; Almajwal, A.M.; Rawashdeh, M. Int. J. Food Prop. 2016, 19, 1303-1316. DOI: https://doi.org/10.1080/10942912.2015.1063066

Rahman, U. A.; Choudhary, M.I.; Thomsan, W.J. Int. J. Pharm. Tech. Res. 2001, 4, 369-374.

Khan, S.; Iqbal, I.; Ahmed, N.; Jamil, A. J. Animal Plant. Sci. 2015, 25, 1451-1456.

Seetaloo, A. D.; Aumeeruddy, M.Z.; Kannan, R.R.; Mahomoodally, M.F. S. Afr. J. Bot. 2019, 120, 3-24. DOI: https://doi.org/10.1016/j.sajb.2018.05.015

Poovitha, S.; Parani, M. BMC Complement. Alt. Med. 2016, 16, 185. DOI: https://doi.org/10.1186/s12906-016-1085-1

Sallau, A. B.; Yakubu, R.N.; Abdullahi, S.; Salihu, A.; Boniface, B,Y. Vitae. 2018, 25, 148-153. DOI: https://doi.org/10.17533/udea.vitae.v25n3a05

Nhiem, N. X.; Kiem, P.V.; Minh, C.V.; Ban, N.K.; Cuong, N.X.; Tung, N.H. Chem. Pharm. Bull. 2010, 58, 720-724.

Alagesan, K.; Thennarasu, P.; Kumar, V.; Sankarnarayanan, S.; Balsamy, T. Int. J. Pharm. Sci. Res. 2012, 3, 316-322.

Shinde, J.; Taldone, T.; Barletta, M.; Kunaparaju, N.; Hu, B.; Kumar, S. Carbohydr. Res. 2008, 343, 1278-1281. DOI: https://doi.org/10.1016/j.carres.2008.03.003

Laoufi, H.; Benariba, N.; Adjdir, S.; Djaziri, R. J. Appl. Pharm. Sci. 2017, 7, 191-198

Kumar, N.; Goel, N. Biotechnol. Rep. 2019, 24, e00370. DOI: https://doi.org/10.1016/j.btre.2019.e00370

Bhatia, A.; Singh, B.; Arora, R.; Arora, S. BMC Complement. Altern. Med. 2019, 19, 74-82.

Ajiboye, B. O.; Ojo, O.A.; Akuboh, O.S.; Okesola, M.A.; Idowu, O.T.; Oyinloye, B.E.; Talabi, J.Y. Jordan J. Biol. Sci. 2018, 11, 163-169.

Hafiz, Z. Z.; Amin, M.; James, J.R.M.; Teh, L.K.; Salleh, M.Z.; Adenan, M.I. Molecules. 2020, 25, 892. DOI: https://doi.org/10.3390/molecules25040892

Kumaran, K. R.; Ahad, M.A.; Rawa, M.S.A.; Wahab, H.; Hassan, Z. Aust. Herb. Insight. 2019, 1, 022-027.

Al-Snafi, A. E. 2015. Int. J. Pharmacol. Toxicol. 2015, 5, 177-192.

Oliveira, C.; Bagetta, D.; Cagide, F.; Teixeira, J.; Amorim, R.; Silva, T.; Garrido, J.; Remião, F.; Uriarte, E.; Oliveira, P.J.; Alcaro, S. Eur. J. Med. Chem.2019, 174, 116-129.

Oboh, G.; Ademiluyi, A.O; Akinyemi, A.J. Exp. Toxicol. Pathol. 2012, 64, 315-319. DOI: https://doi.org/10.1016/j.etp.2010.09.004

El-Akabawy, G.; El-Kholy, W. Ann. Anat. 2014, 196, 119-128. DOI: https://doi.org/10.1016/j.aanat.2014.01.003

Nagarani, G.; Abirami, A.; Siddhuraju, P. Food Sci. Human Wellness. 2014, 3, 36-46. DOI: https://doi.org/10.1016/j.fshw.2014.02.003

Pitchakarn, P.; Suzuki, S.; Ogawa, K.; Pompimon, W.; Takahashi, S.; Asamoto, M.; Limtrakul, P.; Shirai, T. Food Chem. Toxicol. 2012, 50, 840-847. DOI: https://doi.org/10.1016/j.fct.2012.01.009

Li, R. S.; Wang, X.B.; Hu, X.J.; Kong, L.Y. Bioorg. Med. Chem. Lett. 2013, 23, 2636-2641. DOI: https://doi.org/10.1016/j.bmcl.2013.02.095

Darusman, L. K.; Wahyuni, T.W.; Alwi. F. J. Biol. Sci. 2013, 13, 412-416. DOI: http://dx.doi.org/10.3923/jbs.2013.412.416

Alikatte, K. L.; Akondi, B.R.; Yerragunta, V.G.; Veerareddy, P.R.; Palle, S. Brain Dev. 2012, 34, 844-851. DOI: https://doi.org/10.1016/j.braindev.2012.02.008

Khan, H.; Amin, S.; Kamal, M.A.; Patel, S. Biomed. Pharmacother. 2018, 101, 860-870. DOI: https://doi.org/10.1016/j.biopha.2018.03.007

Kong, X. P.; Liu, E.Y.L.; Chen, Z.C.; Xu, M.L.; Yu, A.X.D.; Wu, Q.Y.; Xia, Y.J.; Duan, R.; Dong, T.T.X.; Tsim, K.W.K. Molecules. 2019, 24, 4567. DOI: https://doi.org/10.3390/molecules24244567

Balkrishna, A.; Pokhrel, S.; Tomer, M.; Verma, S.; Kumar, A.; Nain, P.; Gupta, A.; Varshney, A. Molecules. 2019, 24, 4175. DOI: https://doi.org/10.3390/molecules24224175

Zahin, M.; Ahmad, I.; Aqil, F. Drug Chem. Toxicol. 2017, 40, 146-153. DOI: https://doi.org/10.1080/01480545.2016.1188397

Razak, M. F. A.; Aidoo, K.E. Asian J. Pharm. Clin. Res. 2011, 4, 23-27.

Roy, D. C.; Shaik, M. J. Med. Plants Stud. 2013, 1, 126-141.

Sahrawat, A.; Sharma, J.; Rahul, S.N.; Tiwari, S.; Rai, D.V. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 3548-3557.

Abdillahi, H. S.; Verschaeve, L.; Finnie, J. F.; Staden, J.V. J. Ethnopharmacol. 2012, 139, 728-738. DOI: https://doi.org/10.1016/j.jep.2011.11.044

Gautam, S.; Saxena, S.; Kumar, S. J. Food Chem. Nanotechnol. 2016, 2, 97-114. DOI: http://dx.doi.org/10.17756/jfcn.2016-018

Birla, D.; Sonali, K.A.; Shaikh, A.; Khan, A.; Ghosi, A.; Pardeshi, P. Int. J. Health Med. 2017, 5, 81-3.

Abudayyak, M.; Nath, E.O.; Ozhan, G. Turk. J. Med. Sci. 2015, 45, 496-506. DOI: doi:10.3906/sag-1401-153

Plengsuriyakarn, T.; Viyanant, V.; Eursitthichai, V.; Tesana, S.; Chaijaroenkul, W.; Itharat, A.; Bangchang, K.N. Asian J. Cancer Prev. 2012, 13, 4597-4606. DOI: http://dx.doi.org/10.7314/APJCP.2012.13.9.4597

Stanisiere, J.; Mousset, P.Y.; Lafay, S. Foods. 2018, 7, 50-78.

Bekoe, E. O.; Agyare, C.; Boakye, Y.D.; Baiden, B.M.; Asase, A.; Sarkodie, J.; Nettey, H.; Adu, F.; Otu, P.B.; Agyarkwa, B.; Amoateng, P.; Asiedu-Gyekye, I.; Nyarko, A. J. Ethnopharmacol. 2020, 248, 112309.‏ DOI: https://doi.org/10.1016/j.jep.2019.112309

Islam, S.; Jalaluddin, M. Am. J. Food Sci. Health. 2019, 5, 25-31.‏

Adewumi, O. O.; Oladele, E.O.; Taiwo, I.A. Niger. J. Environ. Sci. Technol. 2019, 3, 62-68.

Aydin, G.; Kaya, E. Int. J. Tradit. Complement. Med. Res. 2020, 1, 79-95.

Ramos, A.; Rivero, R.; Victoria, M.C.; Visozo, A.; Piloto, J.; Garcıa, A. J. Ethnopharmacol. 2001, 77, 25-30. DOI: https://doi.org/10.1016/S0378-8741(01)00257-4

Khan, M. S.; Qais, F.A.; Ahmad, I.; Hussain, A.; Alajmi, M.F. Toxicol. Res. 2018, 7, 156-171. DOI: https://doi.org/10.1039/c7tx00269f

Downloads

Published

2022-06-30

Issue

Section

Regular Articles