Non-Relativistic Ro-Vibrational Energies of Chlorine Molecule for Molecular Attractive Potential Model

Authors

  • C. A. Onate Landmark University
  • I. B Okon University of Uyo
  • M. C Onyeaju University of Port Harcourt

DOI:

https://doi.org/10.29356/jmcs.v66i2.1712

Keywords:

Wave equation, eigensolutions, bound state, Schrὅdinger equation

Abstract

Abstract. We obtained the solutions of the radial Schrödinger equation with the modified molecular attractive potential model by employing the supersymmetric WKB method, and present the non-relativistic rotation-vibrational energy equation for diatomic molecules. Using the energy equation and the spectroscopic parameters of chlorine molecule, we computed the vibrational energy eigenvalues for various quantum states. The calculated results are found to be in agreement with the experimental values.

 

Resumen. Obtenemos las soluciones de la ecuación radial de Schrödinger con el modelo de potencial molecular atractivo modificado empleando el método WKB supersimétrico, y presentamos la ecuación para la energía rotacional-vibracional norelativista para moléculas diatómicas. Utilizando la ecuación para la energía y los parámetros espectroscópicos de la molécula de cloro, calculamos los valores propios de las energías vibracionales para varios estados cuánticos. Se encuentra que los resultados calculados están en acuerdo con los valores experimentales.

Author Biographies

C. A. Onate, Landmark University

Physics Programme, Department of Physical Sciences.

I. B Okon, University of Uyo

Theoretical Physics Group, Department of Physics.

M. C Onyeaju, University of Port Harcourt

Theoretical Physics group, Department of Physics.

References

Jia, C. –S.; Cao, S. –Y. Bull. Korean Chem. Soc. 2013, 34, 3425-3428. DOI: http://dx.doi.org/10.5012/bkcs.2013.34.11.3425

Yanar, H.; Aydogdu, O.; Saltı M. Mol. Phys. 2016, 114, 3134-3142. DOI: http://dx.doi.org/10.1080/00268976.2016.1220645

Bin Tang, B.; Jia, C. –S.. Eur. Phys. J. Plus. 2017, 132, 375. DOI: http://doi.org/10.1140/epjp/i2017-11657-7

Khordad, R.; Ghanbari, A. J. Low Temp. Phys. 2020, 199, 1198. DOI: https://doi.org/10.1007/s10909-020-02368-8

Liu, J. –Y.; Hu, X. –T.; Jia, C. –S. Can. J. Chem. 2014, 92, 40. DOI: dx.doi.org/10.1139/cjc-2013-0396

Onate, C. A.; Akanbi, T. A.; Okon, I. B. Scientific Reports. 2021, 11, 6198. DOI: https://doi.org/10.1038/s41598-021-85761-x

Onate, C. A.; Akanbi, T. A. Result. Phys. 2021, 22, 103961. DOI: https://doi.org/10.1016/j.rinp.2021.103961

Zhang, L. –H.; LI, X. –P.; Jia, C. –S. Int. J. Quant. Chem. 2011, 111, 1870. DOI: http://dio.org/10.1002/qua.22477

Qiang, W.-C.; Dong, S.-H. Physics Letters A. 2007, 368, 13. DOI: doi:10.1016/j.physleta.2007.03.057

Dong, S.-H; Qiang, W.-C. Phys. Lett. A. 2008, 372, 4789. DOI: doi.org/10.1016/j.physleta.2008.05.020

Greene, R. L.; Aldrich, C. Phys. Rev. A. 1976, 14, 2363-2366. DOI: https://doi.org/10.1103/PhysRevA.14.2363

Jia, C. –S.; Guo, P.; Diao, Y. –F.; Yi, L. –Z.; Xie, X. –J. Eur. Phys. J. A. 2007, 34, 41-48. DOI: http://doi.org/10.1140/epja/i2007-10486-2

Hassanabadi, H.; Zarrinmakar, S.; Rahimov, H. Commun. Theor. Phys. 2011, 56, 423. DOI: http://www.iop.org/EJ/journal/ctp

Wei, G. –F.; Dong, S. –H. Phys. Lett. B. 2010, 686, 288. DOI: http://doi.org/10.1016/physletb.2010.02.070

Witten, E. Nucl. Phys. B. 1981, 188, 513. DOI: https://doi.org/10.1016/0550-3213(81)90006-7

Gendenshtein, L. E. Sov. Phys. (JETP) Lett. 1983, 38, 356.

Cooper, F.; Khare, A.; Sukhatme, U. Phys. Rep. 1995, 251, 267. DOI: https://doi.org/10.1016/0370-1573(94)00080-M

Comtet, A.; Bandrank, A.; Campbell, D. E. Phys. Lett. B. 1985, 150, 159. DOI: https://doi.org/10.1016/0370-2693(85)90160-1

Coxon, J. A. J. Quant. Spectrosc. Radial Transfer. 1971, 11, 443-462. DOI: https://doi.org/10.1016/0022-4073(71)90083-5

Kaur, S.; Mahajan, C.G. Pramana J. Phys. 1999, 52, 459. DOI: https://doi.org/10.1007/BF02830093

Downloads

Published

2022-04-11

Issue

Section

Regular Articles