Selective Pb(II)-Imprinted Polymer for Solid Phase Extraction in the Trace Determination of Lead in Infant Formula by Capillary Electrophoresis
DOI:
https://doi.org/10.29356/jmcs.v66i2.1694Keywords:
Lead, ion-imprinted polymer, capillary electrophoresis, infant formula samplesAbstract
Abstract. A lead ion-imprinted polymer (IIP) based on methacrylic acid (MAA) and 4-vinylpyridine (4VP) as functional monomers has been synthesized by a radical precipitation method. The complex Pb-MAA-4VP was polymerized with ethylene glycol dimethacrylate as the cross-linker agent. The material was used in solid phase extraction (SPE) coupled with capillary electrophoresis (CE) for the determination of lead in infant formula samples. The physical-chemical properties of the IIP were characterized by scanning electron microscopy, IR spectroscopy, and Freundlich and Dubinin-Raduskevich models. The IIP selectivity was determined in presence of Ca(II), Mg(II), Cd(II), Cr(III) and Cu(II), which are present in the infant formula sample. The proposed methodology (SPE-CE) for the determination of lead has a limit of detection of 0.5 µg L-1 and a limit of quantification of 1.5 µg L-1, with an intra and inter-day repeatability of less than 5 % RSD in all cases. Four of twenty samples were positive for lead with concentrations ranging from 10 to 43 µg kg-1, and the results were compared with ETAAS. ANOVA demonstrated no significant difference between the results obtained by SPE-CE and ETAAS (α = 0.05 %).
Resumen. Se realizó la síntesis de un polímero impreso de iones (IIP) vía radicales libres para la extracción efectiva de plomo, empleando como monómeros funcionales ácido metacrilico (MAA) y 4-vinilpiridina (4VP). El complejo Pb-MAA-4VP fue polimerizado empleando al dimetacrilato de etilenglicol como agente entrecruzante. El polímero fue utilizado en un sistema de extracción en fase sólida (SPE) acoplado a electroforesis capilar (CE) en la determinación de plomo en muestras de fórmulas infantiles. El IIP óptimo fue caracterizado respecto a su morfología y propiedades fisicoquímicas mediante microscopia electrónica de barrido, espectroscopia IR e isotermas de adsorción (modelo Freundlich y Dubinin-Raduskevich). La selectividad del IIP se estudió en presencia de iones metálicos contenidos en las fórmulas infantiles tales como: Ca(II), Mg(II), Cd(II), Cr(III) y Cu(II). La metodología propuesta en el presente trabajo (IIP-SPE-CE) mostró límites de detección de 0.5 µg L-1 y límites de cuantificación de 1.5 µg L-1, con una repetitividad y reproducibilidad adecuadas (< 5 % DER) en todos los casos. Cuatro de las veinte muestras analizadas dieron positivo a la presencia de plomo con concentraciones entre 10 a 43 µg L-1, dichos resultados fueron comparados con una metodología de referencia (ETAAS). El análisis de ANOVA demostró que no existe diferencia significativa entre los resultados obtenidos por IIP-SPE-CE y ETAAS (α=0.05 %).
Downloads
References
Lee, J. W., Choi, H., Hwang, U. K., Kang, J. C., Kang, Y. J., Kim, K. I., Kim, J. H. Environ. Toxicol. Pharmacol. 2019, 68, 101-108. DOI: http://dx.doi.org/10.1016/j.etap.2019.03.010
Bawa, U., Bukar, A., Abdullahi, Y. J. Sci. Technol. Educ. 2015, 3, 71-79.
Flora, G., Gupta, D., Tiwari, A., Toxicol. 2012, 5, 47-58. DOI: http://dx.doi.org/10.2478/v10102-012-0009-2
Zhong, W. S., Ren, T., Zhao, L. J. J. Food Drug Anal. 2016, 24, 46-55. DOI: http://dx.doi.org/10.1016/j.jfda.2015.04.010
Njati, S. Y., Maguta, M. M., Environ. pollut. 2019, 249, 1091-1105. DOI: http://doi.org/10.1016/j.envpol.2019.03.062
European Commision Regulation 1881/2006. Official Journal of the European Union, L 364, 5-24.
Alimentarious, CODEX STAN 2009, 193-1995, 1-62.
Zhou, X., Qu, X., Zhao, S., Wang, J., Li, S., Zhen, N. Biol. Trace Elem. Res. 2017, 176, 120-129. DOI: http://dx.doi.org/10.1007/s12011-016-0819-8
Kazantzi, V., Drosaki, E., Skok, A., Vishnikin, A. B., Anthemidis, A. Microchem. J. 2019, 148, 514-520. DOI: http://dx.doi.org/10.1016/j.cherd.2017.03.036
Mataveli, L. R. V., Buzzo, M. L., Arauz, L. J. D., Carvalho, M. D. F. H., Arakaki, E. E. K., Matsuzaki, R., Tiglea, P. J. Anal. Methods Chem. 2016, 2016. DOI: http://dx.doi.org/10.1155/2016/3968786
Chaiyo, S., Apiluk, A., Siangproh, W., Chailapakul, O. Sens. Actuator B-Chem. 2016, 233, 540-549. DOI: http://dx.doi.org/10.1016/j.nsb.2016.04.109
García-Martín, S., Barciela-García, J., Herrero-Latorre, Peña-Crecente, C., R. M. J. Anal. Chem. 2020, 75, 34-43. DOI: https://doi.org/10.1134/S1061934820010074
Buszewski, B., Szultka, M. Crit. Rev. Anal. Chem. 2012, 42, 198-213. DOI: http://dx.doi.org/10.1080/07373937.2011.645413
Huck, C. W., Bonn, G. K. J. Chromatogr. A. 2000, 885, 51-72. DOI: http://dx.doi.org/10.1016/S0021-9673(00)00333-2
Biswas, T. K., Yusoff, M. M., Sarjadi, M. S., Arshad, S. E., Musta, B., Rahman, M. L. Sep. Sci. Technol. 2019, 2019, 1-10. DOI: http://dx.doi.org/10.1080/01496395.2019.1575418
Wang, S., She, Y., Hong, S., Du, X., Yan, M., Wang, Y., Qi, Y., Wang, M., Jiang, W., Wang, J. J. Hazard. Mater. 2019, 367, 686-693. DOI: http://dx.doi.org/10.1016/j.jhazmat.2018.12.089
Quinto, M. L., Khan, S., Picasso, G., Sotomayor, M. D. P. T. J. Hazard. Mater. 2020, 384, 121374. DOI: https://dx.doi.org/10.1016/j.jhazmat.2019.121374
Sharma, G., Kandasubramanian, B. J. Chem. Eng. Data. 2020, 65, 396-418. DOI: http://dx.doi.org/10.1021/acs.jced.9b00953
Song, X., Niu, Y., Zhang, P., Zhang, C., Zhang, Z., Zhu, Y., Qu, R. Fuel. 2017, 199, 91-101. DOI: http://dx.doi.org/10.1016/j.fuel.2017.02.076
Wang, L., Li, J., Wang, J., Guo, X., Wang, X., Choo, J., Chen, L. J. Colloid Interface Sci. 2019, 541, 376-386. DOI: https://doi.org/10.1016/j.jcis.2019.01.081
Tsoi, Y. K., Ho, Y. M., Leung, K. S. Y. Talanta. 2012, 89, 162-168. DOI: http://dx.doi.org/10.1016/j.talanta.2011.12.007
Rajabi, H. R., Razmpour, S. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2016, 153 45-52. DOI: http://dx.doi.org/10.1016/j.saa.2015.08.010
Fu, J., Wang X., Li, J., Ding, Y., Chen, L. RSC Adv. 2016, 6, 44087-44095. DOI: http://dx.doi.org/10.1039/c6ra07785d
Shamsipur, M., Rajabi, H. R., Pourmortazavi, S. M., Roushani, M. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2014, 117, 24-33. DOI: http://dx.doi.org/10.1016/j.saa.2013.07.094
Liang, Q., Geng, J., Luo, H., Fang, W., Yin, Y. J. Molec. Liq. 2017, 248, 767-774. DOI: http://dx.doi.org/10.1016/j.molliq.2017.10.114
Zhang, Z., Zhang, X., Niu, D., Li, Y., Shi, J. J. Hazard. Mater. 2017, 328, 160-169. DOI: http://dx.doi.org/10.1016/j.jhazmat.2017.01.003
Lu, W., Wang, X., Wu, X., Liu, D., Li, Chen, J., L., Zhang X. J. Chromatogr. A. 2017, 1483, 30-39. DOI: https://doi.org/10.1016/j.chroma.2016.12.069
28 Cai, X., Li, J., Zhang, Z., Yang, F., Dong, R., Chen, L. ACS Appl. Mater. Interfaces. 2014, 6, 305-313. DOI: https://doi.org/10.1021/am4042405
Islas, G., Rodriguez, J. A., Perez-Silva, I., Miranda, J. M., Ibarra, I. S. J. Anal. Methods Chem. 2018, 2018, 1-7. DOI: http://doi.org/10.1155/2018/5394527
Zayats, M., Brenner, A. J., Searson, P. C. Biomaterials. 2014, 35, 8659-8668. DOI: http://dx.doi.org/10.1016/j.biomaterials.2014.05.079
Yusof, N. F., Mehamod, F. S, Suah, F. B. M. J. Environ. Chem. Eng. 2019, 7, 103007. DOI: http://dx.doi.org/10.1016/j.jece.2019.103007
De Middeleer, G., Dubruel, P., De Saeger, S. Trac-Trends Anal. Chem. 2016, 76, 71-85. DOI: http://dx.doi.org/10.1016/j.trac.2015.11.007
Ebrahimzadeh, H., Asgharinezhad, A. A., Moazzen, E., Amini, M. M., Sadeghi, O. J. Food Compos. Anal. 2015, 41, 74-80. DOI: http://dx.doi.org/10.1016/j.jfca.2015.02.001
Fasihi, J., Alahyari, S. A., Shamsipur, M., Sharghi, H., Charkhi, A. React. Funct. Polym. 2011, 71, 803-808. DOI: http://dx.doi.org/10.1016/j.reactfunctpolym.2011.03.014
Chen, X. Inform. 2015, 6, 14-22. DOI: http://dx.doi.org/10.3390/info6010014
Weber, T. W., Chakravorti, R. K. AICHE J. 1974, 20, 228-238. DOI: https://doi.org/10.1002/aic.690200204
Dada, A. O., Olalekan, A. P., Olatunya, A. M., Dada, O. J. Appl. Chem. 2012, 3, 38-45.
Konicki, W., Aleksandrak, M., Mijowska, E. Chem. Eng. Res. Des. 2017, 123, 35-49. DOI: http://dx.doi.org/10.1016/j.cherd.2017.03.036
Lu, Y.,Yan. Anal. Chem. 2004, 76, 453-457. DOI: https://doi.org/10.1021/ac0347718
Cao, H.,Yang, P., Ye, T., Yuan, J., Wu, X., Yin, F.,Li, Y., Xu,F. Chemosphere. 2021, 278, 130369. DOI: https://doi.org/10.1016/j.chemosphere.2021.130369
Aboufazeli, F., Zhad, F. H. R. L. Z., Sadeghi, O., Karimi, M., Najafi, E. Food Chem. 2013, 141, 3459–3465. DOI: https://doi.org/10.1016/j.foodchem.2013.06.062
Balouch, A., Talpur, F. N., Kumar, A., Shah, M. T., Mahar, A. M. Microchem. J. 2019, 146, 1160-1168. DOI: https://doi.org/10.1016/j.microc.2019.02.037
García-Otero, N., Teijeiro-Valiño, C., Otero-Romaní, J., Peña-Vázquez, E., Moreda-Piñeiro, A., Bermejo-Barrera, P. Anal. Bioanal. Chem. 2019, 395, 1107–1115. DOI: https://doi.org/10.1007/s00216-009-3044-x
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Juan Francisco Flores Aguilar, Islas G., Rodriguez, Jose A., M. E. Paez-Hernandez, Carlos Andrés Galan-Vidal , Israel Samuel Ibarra
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.