Utilization of Biomass (Eucalyptus Lanceolata) as an Adsorbent - Removal of Methylene Blue from Wastewater


  • Inamullah Mian University of Malakand
  • Sultan Alam University of Malakand
  • Noor Rehman Shaheed Banazir Bhutto University https://orcid.org/0000-0002-5034-072X
  • Hidayat Ullah Shaheed Banazir Bhutto University




Activated carbon, adsorption, adsorbent, FTIR, adsorbate


Abstract. Investigation relevant to the influence of activated carbon (AC) supports biomass of Eucalyptus Lanceolata as an adsorbent was not reported previously. The recent work synthesized a series of studies to know various experimental parameters equilibration time and temperature of the adsorbent for the elimination of dye. Physical structure characterization measured that the surface area of activated carbon increased from 399 to 475 m2.g-1 revealed that the raw biomass had more compact surface than those of activated carbon. FTIR bands were found in the region between 3406.29 cm-1 and 3414.0 cm-1 indicates (-OH) stretching group which leads to hydrogen bonding. Adsorption of Methylene blue was studied on raw and activated carbon. The average activation energy of the activated carbon was 33.67 kJ.mol-1, slightly lower than those of raw carbon, which was 49.14 kJ.mol-1. Intraparticle diffusion, Elovich and Bhangam models were applied to evaluate kinetics studies at 20, 30 and 40 ºC. Thermodynamic parameters, ΔH, ΔS and ΔE were calculated from the adsorption of kinetics. Results indicate that adsorption is a spontaneous process. The negative value of entropy determined that the acid molecules take an oriented position on the surface of the adsorbent. The results show that all the models were best fitted for adsorption.   


Resumen. Una investigación relevante y no reportada previamente respecto a la influencia del carbón activado (CA) apoya que la biomasa de Eucalyptus Lanceolata es un adsorbente. El reciente trabajo sintetizó una serie de estudios para conocer diversos parámetros experimentales de tiempo de equilibrio y temperatura del adsorbente para la eliminación del colorante. La caracterización de la estructura física determinó que el aumento del área superficial del carbón activado de 399 a 475 m2.g-1 revela que la biomasa cruda tenía una superficie más compacta que las del carbón activado. Se encontraron bandas FTIR en la región entre 3406.29 cm-1 y 3414.0 cm-1 indicando el estiramiento del grupo (-OH) que conduce al enlace de hidrógeno. Se estudió la adsorción de azul de metileno en carbón crudo y activado. La energía de activación media del carbón activado fue de 33,67 kJ.mol-1, ligeramente inferior a la del carbón bruto, que fue de 49,14 kJ.mol-1. Se aplicaron modelos de difusión intrapartícula, Elovich y Bhangam para evaluar estudios cinéticos a 20, 30 y 40 ºC. Los parámetros termodinámicos, ΔH, ΔS y ΔE se calcularon a partir de la cinética de adsorción. Los resultados indican que la adsorción es un proceso espontáneo. El valor negativo de la entropía determinó que las moléculas de ácido toman una posición orientada en la superficie del adsorbente. Los resultados muestran que todos los modelos se ajustaron mejor para la adsorción.


Download data is not yet available.

Author Biographies

Inamullah Mian, University of Malakand

Department of Chemistry

Key Laboratory of Coal Clean Conversion and Chemical Process Autonomous Region, College of Chemistry and Chemical Engineering

Sultan Alam, University of Malakand

Department of Chemistry

Noor Rehman, Shaheed Banazir Bhutto University

Department of Chemistry

Hidayat Ullah, Shaheed Banazir Bhutto University

Department of Chemistry


Mian, I.; et al. Bioresour. Technol. 2019, 294, 122099.

Bach, Q.-V.; et al. Energy Convers. Manag. 2017, 141, 72-78.

Kambo, H. S.; Dutta, A. Energy Convers. Manag. 2015, 105, 746-755.

Rai, H. S.; et al. Crit. Rev. Environ. Sci. Technol. 2005, 35, 219-238.

Pholosi, A.; Naidoo, E. B.; Ofomaja, A. E. Mater. Chem. Phys. 2019, 222, 20-30.

Caccin, M.; et al. J. Radioanal. Nucl. Chem. 2013. 297, 9-18.

Ayranci, E.; Duman, O. J. Hazard. Mater. 2005, 124, 125-132.

Shiau, C. Y.; Pan, C. C. Sep. Sci. Technol. 2005, 39, 1733-1750.

Dod, R.,; Banerjee, G.; Saini, S. Biotechnol. Bioprocess Eng. 2012, 17, 862-874.

Rafatullah, M.; et al. J. Hazard. Mater. 2010, 177, 70-80.

Liu, X.; Wang, Y. Mater. Chem. Phys. 2019, 222, 369-376.

Hameed, B.; Ahmad, A.; Latiff, K. Dyes Pigm. 2007, 75, 143-149.

Al-Degs, Y. S.; et al. Dyes Pigm. 2008, 77, 16-23.

Alam, S.; et al. Bull. Chem. Soc. Ethiop. 2017, 31, 411-422.

Crini, G. Dyes Pigm. 2008, 77, 415-426.

Aksu, Z. Process Biochem. 2005, 40, 997-1026.

Robinson, T.; et al. Bioresource Technol. 2001, 77, 247-255.

Pollard, S.; et al. Sci. Total Environ. 1992, 116, 31-52.

Garg, V. K.; et al. Dyes Pigm. 2004, 63, 243-250.

Chiang, Y.-C.; Chiang, P.-C.; Huang, C.-P. Carbon. 2001, 39, 523-534.

Pradhan, B. K.; Sandle, N. Carbon. 1999, 37, 1323-1332.

Cooke, N. E.; Fuller, O. M.; Gaikwad, R. P. Fuel. 1986, 65, 1254-1260.

Qasem, N. A.; El-Shaarawi, M. A. Sol. Energy. 2013, 98, 523-542.

Roosta, M.; et al. Spectrochim. Acta, Part A. 2014, 122, 223-231.

Laidler, K.; Suomen Kemistil. A. 1960, 33, 44; Laidler, K. J. in: Chemical Kinetics, McGraw Hill, 2nd Edit, New York, 1965.

Sharma, M.; Vyas, R. K.; Singh, K. Adsorption. 2013, 19, 161-188.

Aharoni, C.; Sideman, S.; Hoffer, E. J. Chem. Technol. Biotechnol. 1979, 29, 404-412.

Qadeer, R.; et al. J. Chem. Soc. Pak. 1995, 17, 82-86.

Vadivelan, V.; Kumar, K. V. J. Colloid Interface Sci. 2005, 286, 90-100.

Iqbal, Y.; Khan, M.; Ihsanullah, N. Int. J. Environ. Stud. 2005. 62, 57.

Shahin, M. in: Water resources and hydrometeorology of the Arab region, Vol. 59, Springer Science & Business Media, 2007.

Youssef, A.; El-Nabarawy, T.; Samra, S. Colloids Surf. A. 2004, 235, 153-163.

Zengnian, S.; Minghua, Y. Chin. J. Chem. Eng. 2010, 18, 372-376.

Anirudhan, T.; Suchithra, P. Chem. Eng. J. 2010, 156, 146-156.






Regular Articles

Most read articles by the same author(s)