A Simple and Sensitive Inhibitory Kinetic Method for the Carbocisteine Determination

  • Abhishek Srivastava GLA University
  • Dr Vivek Sharma GLA University
  • Vinay Kumar Singh Dr. Shakuntala Misra National Rehabilitation University
  • Krishna Srivastava Shri Ramswaroop Memorial University, Barabanki
Keywords: Inhibitory effect, ligand substitution reaction, catalyst inhibitor complex, cxcipients, pharmaceutical preparations, hexacyanoruthenate(II)

Abstract

Abstract. A fast, reproducible, and sensitive method is proposed for the kinetic determination of carbocisteine (CCys). The method depends on the inhibitory property of carbocisteine, which reduces the Hg2+ catalyzed substitution rate of cyanide from [Ru(CN)6]4- with N-R-salt (1-Nitroso-2-naphthol-3,6-disulfonic acid disodium salt) via forming a stable complex with Hg2+. Spectrophotometric measurements were carried out by recording the absorbance at 525 nm (λmax of [Ru(CN)5 Nitroso-R-Salt]3- complex) at a fixed time of 10 and 15 min under the optimized reaction conditions with [N-R-salt] = 4.5 × 10-4 M, I = 0.05 M (KNO3), Temp = 45.0 ± 0.2 o C, pH = 7.0 ± 0.03, [Hg2+] = 8.0 × 10-5 M and [Ru(CN)64-] = 4.25 × 10-5  M. With the proposed method, CCys can be determined quantitatively down to 3.0 × 10-6 M. This methodology can be effectively used for the rapid quantitative estimation of CCys in the pharmaceutical samples with good accuracy and reproducibility. The addition of common excipients in pharmaceuticals even up to 1000 times with [CCys] does not interfere significantly in the estimation of CCys.

 

Resumen. Se propone un método rápido, reproducibley sensible para la determinación cinética de la carbocisteina (CCys). El método depende de la propiedad inhibitoria de la carbocisteina que reduce la tasa de sustitución catalizada por Hg2+ del cianuro de [Ru(CN)6]4- con la sal N-R (sal disódica del ácido 1-Nitroso-2-naftol-3,6-disulfónico) mediante la formación de un complejo estable con Hg2+. Las mediciones espectrofotométricas se llevaron a cabo registrando la absorbancia a 525 nm (λmax del complejo [Ru(CN)5 Sal-Nitroso-R]3-) en un tiempo fijo de 10 y 15 min en las condiciones de reacción optimizadas con [sal-NR] = 4.5 × 10-4 M, I = 0.05 M (KNO3), Temp = 45.0 ± 0.2 o C, pH = 7.0 ± 0.03, [Hg2+] = 8.0 × 10-5 M y [Ru(CN)64-] = 4.25 × 10-5 M. Con el método propuesto, CCys se puede determinar cuantitativamente hasta 3,0 × 10-6 M. Esta metodología se puede utilizar eficazmente para la estimación cuantitativa rápida de CCys en las muestras farmacéuticas con buena precisión y reproducibilidad. La adición de excipientes comunes en productos farmacéuticos incluso hasta 1000 veces con [CCys] no interfiere significativamente en la estimación de CCys.

Author Biographies

Abhishek Srivastava, GLA University

Department of Chemistry.

Dr Vivek Sharma, GLA University

Department of Chemistry.

Vinay Kumar Singh, Dr. Shakuntala Misra National Rehabilitation University

Department of Chemistry.

References

Rogers, D. F. Respir. Care. 2007, 52, 1176-1193.

Yasuda, H.; Yamaya, M.; Sasaki, T.; Inoue, D.; Nakayama, K.; Tomita, N.; Yoshida, M.; Sasaki, H. J. Am. Geriatr. Soc. 2006, 54, 378–380. DOI: https://doi.org/10.1111/j.1532-5415.2005.00592_9.x.

Hooper, C.; Calvert, J. Int. J. Chron. Obstruct. Pulmon. Dis. 2008, 3, 659-669.

Rahman, I. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2012, 1822, 714-728. DOI: https://doi.org/10.1016/j.bbadis.2011.11.004.

Macciò, A.; Madeddu, C.; Panzone, F.; Mantovani, G. Expert. Opin. Pharmacother. 2009, 10, 693-703. DOI: https://doi.org/10.1517/14656560902758343.

Zheng, Z.; Yang, D.; Huang, X.; Xiao, Z. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 2277-2283. DOI: https://doi.org/10.2147/COPD.S140603.

Karlheinz, D.; Ian, G.; Axel, K.; Hans‐Peter, K.; Wolfgang, L.; Christoph, W. Amino Acids". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. 2007. DOI: https://doi.org/10.1002/14356007.a02_057.pub2.

Tang, K. Front. Mar. Sci. 2020, 7, 68. DOI: https://doi.org/10.3389/fmars.2020.00068.

Abadie, C.; Tcherkez, G. Commun. Bio. 2019, 2, 379. DOI: https://doi.org/10.1038/s42003-019-0616-y.

Kolluru, G. K.; Shen, X.; Kevil, C. G. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 874-884. DOI: https://doi.org/10.1161/ATVBAHA.120.314084.

Fukuto, J. M.; Ignarro, L. J.; Nagy, P.; Wink, D. A.; Kevil, C. G.; Feelisch, M.; Cortese-Krott, M. M.; Bianco, C. L.; Kumagai, Y.; Hobbs, A. J. FEBS Lett. 2018, 592, 2140–2152. DOI: https://doi.org/10.1002/1873-3468.13090.

Omondi, R. O.; Stephen, O.; Ojwach, S. O.; Jaganyi, D. Inorg. Chim. Acta. 2020, 512, 119883. DOI: https://doi.org/10.1016/j.ica.2020.119883.

Naik, R. M.; Srivastava, A.; Tiwari, A. K.; Yaday, S. B. S.; Verma, A. K. J. Iran. Chem. Soc. 2007, 4, 63–71. DOI: https://doi.org/10.1007/BF03245804.

Iioka, T.; Takahashi. S.; Yoshida, Y.; Matsumura, Y.; Hraoka, S.; Sato, H. J. Comput. Chem. 2019, 40, 279-285. DOI: https://doi.org/10.1002/jcc.25588.

Naik, R. M.; Srivastava, A.; Verma, A. K.; Yadav, S. B. S.; Singh, R.; Prasad, S. Bioinorg. Reac. Mech. 2007, 6, 185-192. DOI: https://doi.org/10.1515/IRM.2007.6.3.185.

Srivastava, A.; Sharma, V.; Prajapati, A.; Srivastava, N.; Naik, R. M. Chem. Chem. Technol. 2019, 13, 275-279. DOI: https://doi.org/10.23939/chcht13.03.275.

Prasad, S.; Naik, R. M.; Srivastava, A. Spectrochim. Acta. A. 2008, 70, 958-65. DOI: https://doi.org/10.1016/j.saa.2007.10.011.

Rastogi, R.; Srivastava, A.; Naik, R. M. J. Disp. Sc. Tech. 2020, 41, 1045-1050. DOI: https://doi.org/10.1080/01932691.2019.1614042.

Srivastava, A.; Naik, R. M.; Rastogi, R. J. Iran. Chem. Soc. 2020, 17, 2327-2333. DOI: https://doi.org/10.1007/s13738-020-01927-w.

Huang, Y.; Lin, T.; Hou, L.; Ye, F.; Zhao, S. Microchem. J. 2019, 144, 190–194. DOI: https://doi.org/10.1016/j.microc.2018.09.003.

Dedov, A. G.; Marchenko, D. Y.; Zrelova, L. V. et al. Pet. Chem. 2018, 58, 714–720. DOI: https://doi.org/10.1134/S0965544118080030.

Kostara, A.; Tsogas, G. Z.; Vlessidis, A. G.; Giokas, D. L. ACS. Omega. 2018, 3, 16831-16838. DOI: https://doi.org/10.1021/acsomega.8b02804.

Raab, A.; Feldmann, J. Anal. Chim. Acta. 2019, 1079, 20-29. DOI: https://doi.org/10.1016/j.aca.2019.05.064.

Chao, Q.; Sheng, H.; Cheng, X.; Ren, T. Ana. Sci. 2005, 21, 721-724. DOI: https://doi.org/10.2116/ANALSCI.21.721.

Nelson, J. J. Assoc. Anal. Chem. 1981, 64, 1174-1178. DOI: https://doi.org/10.1093/jaoac/64.5.1174

Feng, G.; Sun, S.; Wang, M.; Zhao, Q.; Liu, L.; Hashi, Y.; Jia, R. J. Water. Supply. Res. T. 2018, 67, 498–505. DOI: https://doi.org/10.2166/aqua.2018.011.

Dzieko, U.; Kubczak, N.; Przybylska, K. P.; Patalski, P.; Balcerek, M. Molecules. 2020, 25, 1232. DOI: https://doi.org/10.3390/molecules25051232.

Cao, L.; Wei, T.; Shi, Y.; Tan, X.; Meng, J. J. Liq. Chrom. Relat. Tech. 2018, 41, 58-65. DOI: https://dio.org/10.1080/10826076.2017.1348953.

Perez-Ruiz, T.; Martinez- Lozano, C.; Tomas, V.; Sidrach-de-cardona, C. J. Pharm. Biomed. Anal. 1996, 15, 33-38. DOI: https://doi.org/10.1016/0731-7085(96)01821-3.

Nugrahani, I,; Abotbina, I. M.; Apsari, C. N.; Kartavinata, T. G.; Sukranso.; Oktaviary, R. Biointerface. Res. Appl. Chem. 2019, 10, 4780-4785. DOI: https://doi.org/10.33263/BRIAC101.780785.

Shoba, S.; Bankole, O. M.; Ogunlaja, A. S. Anal. Methods. 2020, 12, 1094-1106. DOI: https://doi.org/10.1039/C9AY02382H.

Zhand, S.; Jiang, J. Q. Biointerface. Res. Appl. Chem. 2019, 9, 4433-4438. DOI: https://doi.org/10.33263/BRIAC95.433438.

Ni, L.; Geng, X.; Li, S.; Ning, H.; Guan, Y. Talanta. 2020, 207, 120283. DOI: ttps://doi.org/10.1016/j.talanta.2019.120283

Srivastava, A. Biointerface. Res. Appl. Chem. 2020, 10, 7152-7161. DOI: https://doi.org/10.33263/BRIAC106.71527161.

Agarwal, A.; Prasad, S.; Naik, R.M. Microchem. J. 2016, 128, 181-186. DOI: https://doi.org/10.1016/j.microc.2016.04.005.

Srivastava, A. Biointerface. Res. Appl. Chem. 2021, 11, 10654-10663. DOI: https://doi.org/10.33263/BRIAC113.1065410663 .

Bastos, C. M.; Gordon, K. A.; Ocain, T. D. Bioorg. Med. Chem. Lett. 1998, 8, 147-150. DOI: https://dio.org/10.1016/s0960-894x(97)10205-0.

Kenny, R. G.; Marmion, C. J. Chem. Rev. 2019, 119, 1058-1137. DOI: https://doiorg/10.1021/acs.chemrev.8b00271.

Gomes-Junior, F. A.; Silva, R. S.; Lima, R. G.; Vannier-Santos, M.A. FEMS Microbio. Lett. 2017, 364. DOI: https://doi.org/10.1093/femsle/fnx073.

Yu, B.; Rees, T.W.; Liang, J.; Jin, C.; Chen, Y.; Ji, L.; Chao, H. Dalton. Trans. 2019, 48, 3914-21. DOI: https://doi.org/10.1039/C9DT00454H.

Athar, F.; Husain, K.; Abid, M.; Azam, A. Chem. Biodiversity. 2005, 2, 1320-1330. DOI: htpps://dio.org/10.1002/cbdv.200590104.

Lin, K.; Zhao, Z.Z.; Bo, H.B.; Hao, X.J.; Wang, J.Q. Pharmacol. 2018, 9, 1323. DOI: https://doi.org/10.3389/fphar.2018.01323.

Coverdale, J. P. C.; Carron, T. L. M.; Canelon, I. R. Inorganics. 2019, 7, 31. DOI: https://doi.org/10.3390/inorganics7030031.

Gua, L.; Lia, X.; Ran, Q.; Kang, C.; Lee, C.; Shen, J. Cancer. Med. 2016, 5, 2850-2860. DOI: https://doi.org/10.2147/IJN.S131304.

Naik, R. M.; Tewari, R. K.; Singh, P. K.; Tiwari, A. K.; Prasad, S. Trans. Met. Chem. 2005, 30, 968–977. DOI: https://doi.org/10.1007/s11243-005-6266-6.

Baran, T. Trans. Met. Chem. 2000, 25, 41-44. https://dx.doi.org/10.1023/A:1007092416218

Naik, R.M.; Singh, P.K.; Rastogi, R.; Singh, R.; Agarwal, A. Annali. Di. Chimica. 2007, 97, 1169-1179. DOI: https://doi.org/10.1002/adic.200790103.

Naik, R. M.; Agarwal, A.; Verma, A. K.; Yadav, S. B. S.; Kumar, B. Int. J. Chem. Kinet. 2009, 41, 215-226. DOI: https://doi.org/10.1002/kin.20391.

Govil, P. K.; Banerj1, S. K. Ind. J. Chem. A. 1979, 17, 624-626. DOI: http://nopr.niscair.res.in/handle/123456789/51687.

Ivanov, V. M.; Manedova, A. M.; Figurovskaya, V. N.; Ershova, N. I.; Barbalat, Y. A.; Mai, C. T. T. J. Anal. Chem. 2006, 61, 571. DOI: https://doi.org/10.1134/S1061934806060104.

Srivastava, A. Biointerface. Res. Appl. Chem. 2021, 11, 11404-11417. DOI: https://doi.org/ 10.33263/BRIAC114.1140411417.

British Pharmacopoeia, Her Majesty’s Stationary Office, London, 1995.

Published
12-27-2021
Section
Regular Articles