In-silico Studies of Phytochemicals of Ashwagandha, Harsingar, Meethi neem and Tulsi Against Covid-19

Authors

  • Vandita Anand Motilal Nehru National Institute of Technology (MNNIT) Allahabad
  • Saumya Srivastava Motilal Nehru National Institute of Technology (MNNIT) Allahabad
  • Anjana Pandey Motilal Nehru National Institute of Technology (MNNIT) Allahabad

DOI:

https://doi.org/10.29356/jmcs.v66i2.1643

Keywords:

COVID-19, SARS-CoV-2, Indian herbal plants, phytochemical compounds, docking, ADMET analysis

Abstract

Abstract. The ongoing coronavirus disease 2019 (COVID-19) has become a global pandemic and risk to the healthcare system of almost every nation around the world. The endocytic pathway has been considered as a key factor in viral infection. In the case of CoVs, several investigations have shown that these viruses mainly follow the clathrin-mediated endocytic pathway. As a result, inhibiting the clathrin-mediated endocytic pathway might be a useful therapeutic approach. In this study, bioactive components of Harsingar, Meethi neem, Tulsi and Ashwagandha extract was analyzed by HR-LCMS and among them 55 phytochemical compounds were selected based on antiviral and steroidal properties. 55 phytochemical compounds of four Indian herbal plants were used to analyze their binding with clathrin protein associated with COVID -19. Based on the molecular docking as well as ADMET analysis, Ashwagandha, Harsingar, Meethi neem and Tulsi were identified as potential herbal medicine candidates. We have found that the inhibition potentials of the Ashwagandha, Harsingar, Meethi neem and Tulsi are very promising with no side effects.

 

Resumen. La enfermedad provocada por el coronavirus 2019 (COVID-19) se ha convertido en una pandemia global y pone en riesgo a los sistemas de salud de casi cualquier nación en el mundo. Se ha considerado que la ruta endocítica es un factor clave en la infección viral. En el caso de CoVs, varias investigaciones han mostrado que estos virus siguen la ruta endocítica mediada por la clatrina. Como resultado, inhibir la ruta endocítica mediada por la clatrina puede ser una propuesta terapéutica útil. En este estudio, se analizaron extractos de componentes bioactivos de Harsingar, Meethi neem, Tulsi y Ashwagandha por HR-LCMS y entre ellos se seleccionaron 55 compuestos fitoquímicos basados en sus propiedades antivirales y esteroidales. Estos 55 compuestos obtenidos de 4 plantas herbáceas se utilizaron para analizar su interacción con la proteína clatrina asociada al COVID-19. Basados en el acoplamiento molecular así como en el análisis ADMET, se determinó que Harsingar, Meethi neem, Tulsi y Ashwagandha son candidatos potenciales de medicinas herbáceas. Hemos encontrado que los potenciales de inhibición de Harsingar, Meethi neem, Tulsi y Ashwagandha son muy promisorios y no muestran efectos colaterales.

Downloads

Download data is not yet available.

Author Biographies

Vandita Anand, Motilal Nehru National Institute of Technology (MNNIT) Allahabad

Department of Biotechnology

Saumya Srivastava, Motilal Nehru National Institute of Technology (MNNIT) Allahabad

Department of Biotechnology

Anjana Pandey, Motilal Nehru National Institute of Technology (MNNIT) Allahabad

Department of Biotechnology

References

Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X. The Lancet. 2020, 395, 497-506. DOI: 10.1016/S0140-6736(20)30183-5

Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K. S.; Lau, E. H.; Wong, J. Y. N. Engl. J. Med. 2020. DOI: 10.1056/NEJMoa2001316

Guo, Y. R.; Cao, Q. D.; Hong, Z. S.; Tan, Y. Y.; Chen, S. D.; Jin, H. J.; Tan, K. S.; Wang, D. Y.; Yan, Y. Mil. Med. Res. 2020, 7, 11. DOI: 10.1186/s40779-020-00240-0

Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.; Yu, J.; Kang, M.; Song, Y.; Xia, J. N. Engl. J. Med. 2020, 382, 1177-1179. DOI: 10.1056/NEJMc2001737

Cui, J.; Li, F.; Shi, Z. L. Nat. Rev. Microbiol. 2019, 17, 181–192. DOI: 10.1038/s41579-018-0118-9

Finlay, B. B.; See, R. H.; Brunham, R. C. Nat. Rev. Microbiol. 2004, 2, 602–607. DOI: 10.1038/nrmicro930

de Haan, C. A.; Rottier, P. J. Adv. Virus Res. 2005, 64, 165-230. DOI: 10.1016/S0065-3527(05)64006-7

Millet, J. K.; Whittaker, G. R. Virology. 2018, 517, 3-8. DOI: 10.1016/j.virol.2017.12.015

Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; Bao, L. Nat. Med. 2005, 11, 875-879. DOI: 10.1038/nm1267

Hamming, I.; Timens, W.; Bulthuis, M. L. C.; Lely, A. T.; Navis, G. V.; van Goor, H. J. Pathol. 2004, 203, 631-637. DOI: 10.1002/path.1570

Zumla, A.; Chan, J. F.; Azhar, E. I.; Hui, D. S.; Yuen, K. Y. Nat. Rev. Drug Discovery. 2016, 15, 327-347. DOI: 10.1038/nrd.2015.37

Yang, N.; Shen, H. M. Int. J. Biol. Sci. 2020, 16, 1724. DOI: 10.7150/ijbs.45498

Stadler, K.; Ha, H. R.; Ciminale, V.; Spirli, C.; Saletti, G.; Schiavon, M.; Bruttomesso, D.; Bigler, L.; Follath, F.; Pettenazzo, A.; Baritussio, A. Am. J. Respir. Cell Mol. Biol. 2008, 39, 142-149. DOI: 10.1016/j.bbadis.2020.165889

Pu, Y.; Zhang, X. J. Virol. 2008, 82, 8112-8123. DOI: 10.1128/JVI.00837-08

Burkard, C.; Verheije, M. H.; Wicht, O.; van Kasteren, S. I.; van Kuppeveld, F. J.; Haagmans, B. L.; Pelkmans, L.; Rottier, P. J.; Bosch, B. J.; de Haan, C. A. PLoS Pathog. 2014, 10, 1004502. DOI: 10.1371/journal.ppat.1004502

Abiri, R.; Abdul-Hamid, H.; Sytar, O.; Abiri, R.; Bezerra de Almeida, E., Jr.; Sharma, S. K.; Bulgakov, V. P.; Arroo, R. R. J.; Malik, S. Molecules. 2021, 26, 3868. DOI: 10.3390/molecules26133868

Singh, R.; Sharma, R. R.; Kumar, S.; Gupta, R. K.; Patil, R. T. Bioresour. Tech. 2008, 99, 8507-8511. DOI: 10.1016/j.biortech.2008.03.034

Kumar, N.; Shala, A. Y.; Khurana, S. M. P. Int. J. Phytomed. Related Industries. 2021, 13, 229-236. DOI: 10.5958/0975-6892.2021.00026.5

Chikhale, R. V.; Gurav, S. S.; Patil, R. B.; Sinha, S. K.; Prasad, S. K.; Shakya, A.; Shrivastava, S. K.; Gurav, N. S.; Prasad, R. S. J. Biomol. Struct. Dyn. 2020, 39, 4510-4521. DOI: 10.1080/07391102.2020.1778539

Desai, S. V.; Dhumal, A. S.; Chauhan, P. S. Int. J. Pharm. Technol. 2016, 8, 3611–3628.

Parekh, S.; Soni, A. J. Appl. Biol. Biotechnol. 2020, 8, 95-104. DOI: 10.7324/JABB.2020.80116

Gupta, P.; Bajpai, S. K.; Chandra, K.; Singh, K. L.; Tandon, J. S. Indian J. Exp. Biol. 2005, 43, 1156–60.

Samanta, S. K.; Kandimalla, R.; Gogoi, B.; Dutta, K. N.; Choudhury, P.; Deb, P. K.; Devi, R.; Pal, B. C.; Talukdar, N. C. Pharmacol. Res. 2017. DOI: 10.1016/j.phrs.2017.11.024

Gupta, P.; Nahata, A.; Dixit, V. K. J. Chin. Integr. Med. 2011, 9, 824-833. DOI: 10.4236/ajps.2014.519302

Gholap, S.; Kar, A. Pharmazie. 2004, 59, 876–878. DOI:

Udupa, S. L.; Shetty, S.; Udupa, A. L.; Somayaji, S. N. Indian J. Exp. Biol. 2006, 44, 49–54.

Ghoke, S. S.; Sood, R.; Kumar, N.; Pateriya, A. K.; Bhatia, S.; Mishra, A. BMC Complementary Altern. Med. 2018, 18, 174. DOI: 10.1186/s12906-018-2238-1

Ahmad, S.; Zahiruddin, S.; Parveen, B.; Basist, P.; Parveen, A.; Gaurav; Parveen, R.; Ahmad, M. Front. Pharmacol. 2021, 11, 578970. DOI: 10.3389/fphar.2020.578970

Rege, A.; Chowdhary, A. S. Int. J. Pharm. Sci. Rev. Res. 2014, 25, 315–318.

Hombalimath, V. S.; Shet, A. R. J. Adv. Bioinforma. Appl. Res. 2012, 3, 345–356.

Shivakumar, R.; Venkatarangaiah, K.; Shastri, S.; Naga¬raja, R. B.; Sheshagiri, A. Pharmacog. J. 2018, 10, 1221-1229. DOI: 10.5530/pj.2018.6.209

Ghildiyal, R.; Prakash, V.; Gabrani, R. Springer Nature 2020, 279-295. DOI: 10.1007/978-981-15-1761-7_12

Singha, I.; Saxena, S.; Gautam, S.; Saha, A.; Das, S. K. Indian J. Biochem. Biophys. 2020, 57, 219.

Ganeshpurkar, A.; Saluja, A. Indian J. Biochem. Biophys. 2018, 55, 88. DOI: http://nopr.niscair.res.in/handle/123456789/44348

Tetko, I. V.; Tanchuk, V. Y. J. Chem. Inf. Comput. Sci. 2002, 42, 1136. DOI: 10.1021/ci025515j

Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P. W.; Tang, Y. J. Chem. Inf. Model. 2012, 52, 3099. DOI: 10.1021/ci300367a

Webster, D.; Taschereau, P.; Lee, T. D.; Jurgens, T. J. Ethnopharmacol. 2006, 106, 360–363. DOI: 10.1016/j.jep.2006.01.018

Basu, A.; Sarkar, A.; Maulik, U.; Basak, P. Indian J. Biochem. Biophys. 2019, 56, 20. DOI: http://nopr.niscair.res.in/handle/123456789/45817

Bhal, S. K. Advanced Chemistry Development, Toronto, ON, Canada, 2007, 1-4.

Jorgensen, W. L.; Duffy, E. M. Bioor. Med. Chem. Lett. 2000, 10, 1155-1158. DOI: 10.1016/s0960-894x(00)00172-4

Downloads

Published

2022-04-11

Issue

Section

Regular Articles