Investigation of thermochemical Features of Gamma Irradiated Tryptophan Stereoisomers

Authors

  • Ana Neacsu Institute of Physical Chemistry “Ilie Murgulescu”
  • Daniela Gheorghe Institute of Physical Chemistry “Ilie Murgulescu”
  • Victorita Tecuceanu Institute of Organic Chemistry “C.D. Nenitzescu” of Romanian Academy
  • Stefan Perisanu Polytechnic University of Bucharest

DOI:

https://doi.org/10.29356/jmcs.v66i1.1627

Keywords:

Tryptophan isomers, DSC, FTIR, HPLC, gamma irradiation

Abstract

Abstract. In this work, the use of differential scanning calorimetry (DSC) is demonstrated as a powerful technique that can provide accurate thermodynamic property values of nutritional supplements such as tryptophan. Nutritional supplements require a decontamination procedure and irradiation appears as a promising technique for this purpose. The valuable properties of tryptophan for food and pharmaceutical industry as dietary supplement have led to increasing interest in its technological behaviour. L-, D- isomers and DL-racemic mixture of tryptophan irradiated and non-irradiated were studied by DSC. Irradiation was performed at room temperature with gamma radiations using a 137Cs source, the irradiation dose range was between 0.6- 10 kGy. Two steps decomposition pattern for both irradiated and non-irradiated samples up to 350 oC was found. Fourier transform infrared spectroscopic studies were performed. The obtained results indicate that the irradiation process does not inhibit the thermal properties of tryptophan when irradiated up to 10 kGy. The HPLC method was employed to evidence the degradation of the irradiated material.

 

Resumen. En este trabajo, se demuestra el uso de calorimetría diferencial de barrido (DSC) como una técnica poderosa que puede proporcionar valores precisos de propiedades termodinámicas de suplementos nutricionales como el triptófano. Los suplementos nutricionales requieren un procedimiento de descontaminación y la irradiación aparece como una técnica prometedora para este propósito. Las valiosas propiedades del triptófano para la industria alimentaria y farmacéutica como suplemento dietético han provocado un creciente interés por su comportamiento tecnológico. Los isómeros L-, D- y la mezcla racémica DL- de triptófano irradiado y no irradiado fueron estudiados por DSC. La irradiación se realizó a temperatura ambiente con radiaciones gamma utilizando una fuente de 137Cs, el rango de dosis de irradiación estuvo entre 0.6 - 10 kGy. Se encontró un patrón de descomposición de dos pasos para muestras irradiadas y no irradiadas hasta 350 ºC. Se realizaron estudios espectroscópicos de infrarrojos por la transformada de Fourier. Los resultados obtenidos indican que el proceso de irradiación no inhibe las propiedades térmicas del triptófano cuando se irradia hasta 10 kGy. Se empleó el método HPLC para evidenciar la degradación del material irradiado.

Downloads

Download data is not yet available.

Author Biographies

Daniela Gheorghe, Institute of Physical Chemistry “Ilie Murgulescu”

Scientific researcher, Chemical Thermodynamics Department.

Stefan Perisanu, Polytechnic University of Bucharest

Department of General Chemistry.

References

Sidransky H. CRC Series in Modern Nutrition; 2002.

IUPAC-IUB Joint Commission on Biochemical Nomenclature, 1983.

Friedman, M. Intl. J. Trp. Res. 2018, 11, 1-12.

Ahmad, F.; Moat, A.G. J. Biol. Chem. 1966, 241,775–80.

Pallaghy, P.K.; Melnikova, A.P.; Jimenez, E.C.; Olivera, B.M.; Norton, R.S. Biochem. 1999, 38, 11553–9.

Kantoglu, O.; Guven, O. Nucl. Instr. Meth. Phys. Res. B. 2002, 197, 259–264.

Stubbe, J. A. Annu. Rev. Biochem. 1989, 58, 257-263.

Davies, M. J.; Fu, S.; Dean, R. T. Biochem. J. 1995, 305, 643-647.

Van der Zee, J. Biochem. J. 1997, 322, 633-640.

Ban, F.; Gauld, J.W.; Boyd, R.J. J. Phys. Chem. 2000, 104, 5080-5085.

Cherubini, C.; Ursini, O. Springer Plus. 2015, 4, 541-551.

Neacsu, A.; Contineanu, M.; Zaharescu, T.; Contineanu, I. Rev. Chim. 2016, 67, 1745-1750.

Contineanu, M.; Perisanu, St.; Neacsu, A. Analls Univ. Bucharest. 2010, 19, 69-77.

Ayodhya, D.; Venkatesham, M.; Santoshi, A.; Kumara, G.; Reddy, B.; Veerabhadram, G. Int. J. Ind. Chem. 2015, 6, 261–271.

Baran, J.A.; Drozd, M.A.; Ratajczak, H. J. Mol. Struct. 2010, 976, 226–42.

Sadhasivam, B.;Muthusamy, S. Des. Monomers Poly. 2016, 19, 236-247.

Baran, J.A.; Ratajczak, H. Vib. Spectrosc. 2007, 43, 125–39.

Nakamoto, K., in Infrared and raman spectra of inorganic and coordination compounds, part A: theory 458 and applications in inorganic chemistry, John Wiley & Sons, Inc., USA, 2009, 279–281.

Cao, X.; Fischer,G. J. Phys. Chem. A. 1999, 103, 9995-10003.

Sagstuen, E.; Sanderud, A.; Hole, E. O. Radiat. Res. 2004, 162, 112-118.

Iglesias-Groth, S.; Cataldo, F.; Ursini, O.; Manchado, A. Mon. Not. R. Astron. Soc. 2011, 410, 1447–1453.

Yamada, K.; Miyazaki, T.; Shibata, T.; Hara, N.; Tsuchiya, M. J. Chrom. B. 2008, 867, 57–61.

Cech, N.B.; Enke, C.G. Mass Spectrom. Rev. 2001, 20, 362– 387.

Ravenscroft, G.; Stephen, M.J.; Colley, K.R.; Clement, S.; Bringans, S.; Lipscombe, R.; Fabian, V.A.; Laing, N.G.; Nowak, K.J. Neuromuscular Disorders. 2008, 18, 953–958.

Marciniek, B.; Kozak, M.; Naskrent, M.; Hofman, M.; Dettlaff, K.; Stawny, M. J. Therm. Anal. Calorim. 2010, 102, 261-266.

Gheorghe, D.; Neac?u, A.; Contineanu, I.; T?n?sescu, S.; Peri?anu, S. J. Therm. Anal. Calorim. 2017, 130, 1145–1152.

Mathews, M.E.; Riga, A.T. J. Therm. Anal. Calorim. 2009, 96, 673–6.

Matthews, M.E.; Atkinson, I.; Presswala, L.; Najjar, O.; Gerhardstein, N.; Wei, R.; Rye, E.; Riga, A.T. J. Therm. Anal. Calorim. 2008, 93, 281–7.

Wesolowski, M.; Erecinska, J. J. Therm. Anal. Calorim. 2012, 109, 585–593.

Schaberg, A.; Wroblowski, R.; Goertz, R. 3rd European Symposium on Fire Safety Science IOP Publishing, IOP Conf. Series: J. Phys.: Conf. Series. 2018, 1107-1112.

Cataldo, F.; Ragni, P.; Groth, S.I.; Manchado, A. J. Radioanal Nucl. Chem. 2011, 287, 903–911.

Wesolowski, M.; Erecinska, J. J. Therm. Anal. Calorim. 2005, 82, 307–13.

Rodante, F.; Marrosu, G.; Catalani, G. Thermochim. Acta. 1992, 194,197–213.

Rodriguez-Mendez, L.; Rey, F.J.; Martin-Gil, J.; Martin-Gil, F.J. Thermochim. Acta. 1988, 134,73–8.

Weast, R.C., in: CRC Handbook of chemistry and physics, 58-th Edition 1977–1978, Cranwood Parkway, Cleveland, Ohio 44128, C-534.

Bryan, A. M.; Olafsson, P. G. Anal. Lett. 1969, 2, 505-513.

Friedman, M.; Cuq, J.L. J. Agric. Food Chem. 1988, 36, 1079-1093.

Wickern, B.; Muller, B.; Simat, T.; Steinhart, H. J. Chromatogr. A. 1997,786, 57-65.

Bellmaine, S.; Schnellbaecher, A.; Zimmer, A. Free Radical Biol. Med. 2020, 160, 696-718.

Kestens, V.; Auclair, G.; Drozdzewska, K.; Held, A.; Roebben, G.; Linsinger, T. J. Therm. Anal. Calorim. 2010, 99, 245–261.

Downloads

Published

2021-12-27

Issue

Section

Regular Articles