Effect of Polymers nature and Stirring Speeds on Physicochemical Properties and the Controlled Release of Allopurinol-loaded Microspheres

Authors

  • Karima BADIS University of DjillaliLiabes
  • Haouaria Merine University of Djillali Liabes
  • Youssef RAMLI Mohamed V University
  • OumCheikh Larbi University of DjilaliLiabes
  • Cherifa Hakima MEMOU University of DjillaliLiabes

DOI:

https://doi.org/10.29356/jmcs.v66i1.1583

Keywords:

Allopurinol, microencapsulation, carrier polymer, stirring rates, controlled release

Abstract

Abstract. Allopurinol is an antigout drug therapy, commonly used in the treatment of chronic gout or hyperuricaemia associated with treatment of diuretic conditions. In the present study, new formulations based on Allopurinol, have been prepared with the microencapsulation by solvent evaporation process. Microspheres were prepared using pure Allopurinol and polymeric matrices (ethylcellulose EC, poly (ε-caprolactone) PCL, β-cyclodextrin CD and hydroxypropylmethylcellulose HPMC) at different compositions and stirring speeds to investigate the effect of these parameters on loading efficiency and drug release kinetics. The formulations produced were characterized by various methods : Fourier transforms infrared spectroscopy (FTIR), X-ray powder diffractometry, optical microscopy, surface morphology by scanning electron microscopy (SEM) and drug loading, as well as in vitro release studies in the simulated stomach tract. Depending on the stirring speed and the composition of the microparticles, the active ingredient loading is in a range from 10.46 ± 1.45 to 46.40 ± 0.5%. The microspheres are spherical and the mean Sauter diameter (d32) of the microparticles obtained is smaller and is in the range of 47.71 to 151.01 µm. Different release profiles were obtained and show that the release rate is strongly influenced by the characteristics of the microparticles ; namely, the stirring rates and the composition of the microparticles. The release mechanism was identified by modelling using Higuchi and Korsmeyer-Peppas models.

 

Resumen. Alopurinol es una droga terapéutica para tratar la gota, y se utiliza en el tratamiento de gota crónica o hiperuricemia asociada con el tratamiento de condiciones diuréticas. En este estudio, nuevas formulaciones basadas en Alopurinol se prepararon mediante microencapsulación por el proceso de evaporación de disolvente. Microesferas se prepararon usando Alopurinol puro y diferentes matrices poliméricas (etil-celulosa EC, poli(-caprolactona) PCL, β-cyclodextrina CD e hidroxipropil-metil-celulose HPMC) en diferentes composiciones y velocidades de agitación, para investigar el efecto de estos parámetros en la eficiencia de carga y en la cinética de liberación del fármaco. Las formulaciones obtenidas fueron caracterizadas por diferentes técnicas : Espectroscopía infrarroja de transformadas de Fourier (FTIR), difractometría de rayos X de polvos, microscopía óptica, morfología de superficies mediante microscopía electrónica de barrido electrónico, y la eficiencia de carga del fármaco, así como estudios de liberación in vitro en tracto estomacal simulado. Dependiendo de la velocidad de agitación y la composición de las micropartículas, la carga del ingrediente activo se encuentra en el rango de 10.46 ± 1.45 a 46.40 ± 0.5%. Las microesferas son esféricas y el diámetro medio de Sauter (d32) de las micropartículas obtenidas es menor, y se encuentra en el rango de 47.71 a 151.01 µm. Se obtuvieron diferentes perfiles de liberación y se observa que la velocidad de liberación está influenciada principalmente por las características propias de la producción de las micropartículas ; en particualr, las velocidades de agitación y las composición de las micropartículas. El mecanismo de liberación se ajusta mejor a los modelos matemáticos de Higuchi and Korsmeyer-Peppas.

Downloads

Download data is not yet available.

Author Biographies

Karima BADIS, University of DjillaliLiabes

Laboratory of Macromolecular Physical and Organic Chemistry, Faculty of Exact Sciences.

Haouaria Merine, University of Djillali Liabes

Laboratory of Macromolecular Physical and Organic Chemistry, Faculty of Exact Sciences.

Youssef RAMLI, Mohamed V University

Laboratory of Therapeutic Chemistry, Faculty of Medicine and Pharmacy of Rabat.

OumCheikh Larbi, University of DjilaliLiabes

Faculty of Exact Sciences.

Cherifa Hakima MEMOU, University of DjillaliLiabes

Laboratory of Macromolecular Physical and Organic Chemistry, Faculty of Exact Sciences.

References

Pacher, P.; Nivorozhkin, A.; Szabó, C. Pharmacol. Rev. 2006, 58, 87–114.

Vazquez-Mellado, J.; Morales, E. M.; Pacheco-Tena, C.; Burgos-Vargas, R. Ann. Rheum. Dis. 2001, 60, 981–983.

Mahajan, S.; Patharkar, A.; Kuche, K.; Maheshwari, R.; Deb, P. K.; Kalia, K.; et al. Int.l J. Pharm. 2018, 548, 540–558.

Sy, P. M.; Anton, N.; Idoux-Gillet, Y.; Dieng, S. M.; Messaddeq, N.; Ennahar, S.; et al. Int. J. Pharm.. 2018, 549, 299–305.

Hu, Y.; Zhi, Z.; Wang, T.; Jiang, T.; Wang, S. Eur. J. Pharm. Biopharm. 2011, 79, 544–551.

Lu, M.; Cao, Y.; Ho, C.-T. & Huang, Q. J. Agric. Food Chem. 2016, 64, 4735–4741.

Khan, S. A.; Ahmad, M.; Murtaza, G.; Aamir, M. N.; Madni, A.; Kousar, R.; Minhas, U. Ars Pharm. 2010, 51, 105-115.

Sharma, O. P.; Shah, M. V.; Parikh, D. C.; Mehta, T. A. Expert Opin. Drug Delivery. 2015, 12, 513–524.

El-Gibaly, I.; Abdel-Ghaffar, S. Int. J. Pharm. 2005, 294, 33–51.

Jagdale, S. C.; Musale, V.; Kuchekar, B. S.; Chabukswar, A. R. Braz. J. Pharm. Sci. 2011, 47, 513-523.

Rowe, R. C.; Sheskey, P. J.; Quinn, M. E. Handbook of Pharmaceutical Excipients. Edit. London: Pharmaceutical Press; 2009.

Giri, T. K.; Kumar, K.; Alexander, A.; et al. Bull Fac. Pharm. Cairo Univ. 2012, 147–159.

Diaf, K.; Elbahri, Z.; Chafi, N.; Belarbi, L.; Mesli, A. Chem. Pap. 2012, 66:779.

Vueba, M. L.; Batista de Carvalho, L. A. E.; Veiga, F.; Sousa, J. J.; Pina, M. E. Eur. J. Pharm. Biopharm. 2004, 58, 51-59.

Poovi, G.; Rajpriyadarsini, S.; Uma, S.; Vinothini, R. Asian J. Pharm. Sci. 2015, 10, 433-441.

Merdoud, A.; Mouffok, M.; Mesli, A.; Chafi, N.; Chaib, M. J. Serb. Chem. Soc. 2020, 85, 531–545.

Mouffok M.; Mesli A.; Abdelmalek I.; Gontier E. J. Serb. Chem. Soc. 2016, 81,1183.

Larbi, O. C.; Merine, H.; Ramli, Y.; Toumi, F. B.; Guemra, K.; Dehbi, A. J. Serb. Chem. Soc. 2018, 83, 1–19.

Bala, S.; Mahatma, O. P.; Azim, Md. S. Inter. Res. J. Pharm. 2013, 4,77.

Khoukhi, O.; El Bahri, Z.; Diaf, K.; Baitiche, M. Chem. Pap. 2016, 0014.

Azouz, L.; Dahmoune, F.; Rezgui, F.; G'Sell, C. Mater. Sci. Eng. 2016, 58,412-419.

Spadola, G.; Sanna, V.; Bartoli, J.; et al. Environ. Sci. Pollut. Res. 2020, 27, 20125–20135.

Zhu, K. J.; Li, Y.; Jiang, H. L.; Yasuda, H.; Ichimaru, A.; Yamamoto, K.; Lecomte, P.; Jerome, R. J. Microencapsul. 2005, 22, 25-36.

Middleton, JC.; Tipton, AJ. Biomaterials.. 2000, 21, 2335-46.

Greenwald, D.; Shumway, S.; Albear, P.; Gottlieb, L. J. Surg. Res. 1994, 56, 372 – 7.

Nair, L. S.; Laurencin, C. T. Prog. Polym. Sci. 2007, 32, 762-98.

Rudkevich, D. M.; Leontiev, A. V. Aust. J. Chem. 2004, 57, 713-722.

Mourtzinos, I.; Fotini, S.; Yannakopoulou, K.; Chiou, A.; Karathanos, V. T. J. Agric. Food Chem. 2007, 55, 8088.

Nalluri, B. N.; Chowdary, K. P. R.; Murthy, K. V. R.; Becket, G.; Crooks, P. A. AAPS Pharm. Sci. Tech. 2007, 8, E1-E7.

Samy, A.; Marzouk, M. A.; Ammar, A. A.; Ahmed, M. K. Drug Discoveries Ther. 2010, 4,77-84.

Wagner, J. G. J. Pharm. Sci. 1969, 58, 1253.

Gibaldi, M.; Feldman, S. J. Pharm. Sci. 1967, 56, 1238.

Higuchi, T. J. Pharm. Sci. 1963, 52, 1145–9.

Korsmeyer, R. W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N. A. Inter. J. Pharm. 1983, 15, 25–35.

Garud, N.; Garud, A. Trop. J. Pharm. Res. 2012, 11, 577-583.

Le Corre, P.; Le Guevello, P.; Gajan, V.; Chevanne, F.; LeVerge, R. Int. J. Pharm. 1994, 107, 41-49.

Dhanaraju, M. D.; Elizabeth, S.; Poovi, G. J. Pharm. Investig. 2011, 41, 279–288.

Blanc, M. D., Gomez, C., Olmo, R.; et al. Int. J. Pharm. 2000, 202, 29–39.

Szejtli, J. Cyclodextrin Technology, Kluwer Academic Publishers, Dordrecht. 1988, 1-78.

Stella, V. J., Rao, V. M., Zannou, E. A.; Zia, V. Adv. Drug Deliv. Rev. 1999, 36, 3-16.

Bodmeier, R.; McGinity, J.W. Int. J. Pharm. 1988, 43, 179-186.

Bodmeier, R.; Chen, H. J. Controlled Release. 1989, 10, 167-175.

Jagtap, Y. M.; Bhujbal, R. K.; Ranade, A. N.; et al. Indian J. Pharm. Sci. 2012, 74, 512–520.

Silva Pires, M. A.; Souza dos Santos, R. A.;Sinisterra, R. D. Molecules. 2011, 16, 4482.

Okonogi, S.; Oguchi, T.; Yonemochi, S.; Puttipipatkhacharm, S.; Yamamoto, K. Int. J. Pharm. 1997, 156, 175-180.

Zhang,G. G. Z.; Law, D.; Schmitt, E. A.; Qiu,Y. Adv. Drug Deliv.Rev. 2004, 56, 371-390.

Sun, Y.;Rui, Y.; Wenliang, Z.; Tang, X. Int. J. Pharm. 2008, 359, 144-149.

Mura, P.; Manderioli, A.; Bramanti, G.; Ceccarelli, L. Drug Dev. Ind. Pharm. 1996, 22, 909–916.

Jeong, J. C.; Lee, J.; Cho, K. J. Control. Rel. 2003, 92, 249-258.

Yunpeng, C.; Yinghui, C.; Xiaoyun, H.; Zhenguo, L.; Weien, Y. Int. J. Nanomedicine. 2013, 8, 1111-1120.

Atkins, P.W. Physical Chemistry, sixthed., Oxford University Press, Oxford,UK. 1998.

Gautier, H.;Guicheux, J.; Grimandi, G.; Faivre, A.; Daculsi, G.; Merle, C. J. Biomed. Mater.Res. 1998, 40, 606 -613.

Mateovic, T.; Kriznar, B.; Bogataj, M.; Mrhar, A. J. Microencapsul. 2002, 19, 29-36.

Yang, Y.Y.; Chung, T.S.; Ng, N.P. Biomaterials. 2001, 22, 231-241.

Mura, P.; Faucci, M.T.; Parrini, P.L. Drug Dev. Ind. Pharm. 2001, 27, 119-128.

Samy, E. M.; Hassan, M. A.; Tous, S. S.; Rhodes, C. T. Eur. J. Pharm. Biopharm. 2000, 49, 119-127.

Lloyd, G. R.; Craig, D. Q. M.; Smith, A. A. Eur. J. Pharm. Biopharm. 1999, 48, 59-65.

Pokharkar, V. B.; Mandpe, L. P.; Padamwar, M. N.; et al. Powder Technol. 2006, 167, 20-25.

Siepmann, J.; Peppas, N. A. Adv. Drug Deliv. Rev. 2001, 48, 139-157.

Ritger, P. L.; Peppas, N. A. J. Control. Rel. 1987, 5, 37-42.

Soppimath, K. S.; Kulkarni, A. R.; Aminabhavi, T. M. J. Microencapsul. 2001, 18, 397-409.

Downloads

Published

2021-12-27

Issue

Section

Regular Articles