Probing the Comparative Bioefficacy of Allium sativum L. Bulb through Different Solvents

  • Fatma Hussain University of Agriculture
  • Muhammad Shahid University of Agriculture
  • Saba Zulfiqar University Medical and Dental College
  • Javaria Hafeez University of Agriculture
Keywords: Antioxidants, A. sativum, extraction solvents, flavonoid, antidiabetic, ethanol, phenols

Abstract

Abstract. Allium sativum (garlic), an aromatic bulbous plant is one of the most vital and oldest authenticated herbs which has been utilized from ancient times as a traditional medicine. A. sativum has cardioprotective, antimicrobial, anti-inflammatory, antidiabetic, antioxidant and anticancer properties due to a large range of phenolic compounds and sulfur containing compounds. The current study was conducted to assess the antioxidant chemistry, and numerous bioactivities of A. sativum bulbs extracts in different solvents. Ethanol fraction was the most active antioxidant and showed maximum total phenolic content (16.18 g GAE/100 g), total flavonoid content (95.04 g CE/100 g) and free radical scavenging activity (75.50 %). Methanol (4 %) fraction exhibited maximum antiglycation activity. Aqueous, n-hexane and ethyl acetate fractions exhibited maximal (52 %, 24 % and 38 %) inhibitions of alpha-amylase, alpha-glucosidase and acetylcholinesterase respectively. In an antimicrobial assay, ethanol (59.05 %) and chloroform (72.92 %) fractions showed maximum inhibition of Pasturella multocida and Staphylococcus aureus strains respectively. n-butanol and n-hexane fractions showed maximum (31 %) antihemolytic activity and (20 %) thrombolytic activities respectively. A. sativum bulb extracts and fractions have noteworthy bio-efficacies that holds promise to be used as a source of natural drug to cure various disorders.

 

Resumen. Allium sativum (ajo), una planta bulbosa aromática, es una de las hierbas autenticadas más vitales y antiguas que se han utilizado desde la antigüedad como medicina tradicional. A. sativum tiene propiedades cardioprotectoras, antimicrobianas, anti-inflamatorias, anti-diabéticas, anti-oxidantes y anti-cancerígenas debido a una amplia gama de compuestos fenólicos y compuestos que contienen azufre. El estudio actual se llevó a cabo para evaluar la química antioxidante y numerosas bioactividades de extractos de rizoma de A. sativum en diferentes disolventes. La fracción de etanol tuvo la mayor actividad antioxidante y mostró un contenido fenólico total máximo (16.18 g GAE / 100 g), contenido total de flavonoides (95.04 g CE / 100 g) y actividad captadora de radicales libres (75.50 %). La fracción de metanol (4 %) exhibió la mayor actividad de antiglicación. Las fracciones acuosa, de n-hexano y de acetato de etilo inhibieron la actividad de alfa-amilasa, alfa-glucosidasa y acetilcolinesterasa, en 52 %, 24 % y 38 % respectivamente. En el ensayo antimicrobiano, las fracciones de etanol (59.05 %) y cloroformo (72.92 %) mostraron una inhibición máxima de las cepas de Pasturella multocida y Staphylococcus aureus, respectivamente. Las fracciones de n-butanol y n-hexano mostraron actividad anti-hemolítica (31 %) y trombolítica (20 %) respectivamente. Los extractos y fracciones de rizoma de A. sativum tienen bioeficacia notable con potencial de ser utilizadas como una fuente de fármaco natural para curar diversos trastornos.

Author Biographies

Fatma Hussain, University of Agriculture

Department of Biochemistry, Faculty of Sciences.

Muhammad Shahid, University of Agriculture

Department of Biochemistry, Faculty of Sciences.

Saba Zulfiqar, University Medical and Dental College

Department of Biochemistry, Faculty of Sciences.

Javaria Hafeez, University of Agriculture

Department of Biochemistry, Faculty of Sciences.

References

El-Saber, B.G.; Magdy, B.A.; Wasef, G.L.; Elewa, Y.H.; Al-Sagan, A.A.; El-Hack, A.; Mohamed, E.; Taha, A.E.; Abd-Elhakim, M.Y.; Prasad, D.H. Nutrients. 2020, 12, 872. DOI: https://doi.org/10.3390/nu12030872.

Badal, D.S.; Dwivedi, A.K.; Kumar, V.; Singh, S.; Prakash, A.; Verma, S.; Kumar, J. J. Pharmacogn. Phytochem. 2019, 8, 587-590.

Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H.B. Foods. 2019, 8, 246-276. DOI: https://doi.org/10.3390/foods8070246.

Liu, Q.; Meng, X.; Li, Y.; Zhao, C.N.; Tang, G.Y.; Li, S.; Gan, R.Y.; Li, H.B. Compr. Rev. Food Sci. Food Saf. 2018, 17, 937–952. DOI: https://doi.org/10.1111/1541-4337.12355.

Dorrigiv, M.; Zareiyan, A.; Hosseinzadeh, H. Phytother. Res. 2020, 34, 1770-1797. DOI: 10.1002/ptr.6645.

Yan, J.K.; Wang, C.; Yu, Y.B.; Wu, L.X.; Chen, T.T.; Wang, Z.W. Food Chem. 2020, 339, 128081. DOI: https://doi.org/10.1016/j.foodchem.2020.128081.

Hussain, F.; Akram, A.; Hafeez, J.; Shahid, M. Rev. Mex. Ing. Quím. 2021, 20, 173-184. DOI. https://doi.org/10.24275/rmiq/Bio1735.

Sabir, S.; Anjum, A.A.; Ijaz, T.; Ali, M.A. Pak. J. Med. Sci. 2014, 30, 389-395.

Hossain, M.S.; Chowdhury, M.E.H.; Das, S.; Chowdhury, I.U. J. Pharmacogn. Phytochem. 2012, 1, 99-104.

Powell, W.A.; Catranis, C.M.; Maynard, C.A. Lett. Appl. Microbio. 2000, 31, 163-68. DOI: https://doi.org/10.1046/j.1365-2672.2000.00782.x.

Ji, S.; Yoo, T.; Jin, S.; Ju, H.; Eom, S.; Kim, J.S.; Hyun, T. Rev. Mex. Ing. Quím. 2020, 19, 1453-1464. DOI: https://doi.org/10.24275/rmiq/Bio1186.

Rojo-Gutiérrez, E.; Buenrostro-Figueroa, J.; Natividad-Rangel, R.; Romero-Romero, R.; Sepulveda, D.; Baeza-Jimenez, R. Rev. Mex. Ing. Quím. 2020, 19, 385-394. DOI: https://doi.org/10.24275/rmiq/Alim1704.

Queiroz, Y.S.; Ishimoto, E.Y.; Bastos, D.H.M.; Sampaio, G.R.; Torres, E.A.F.S. Food Chem. 2009, 115, 371–374. DOI: https://doi.org/10.1016/j.foodchem.2008.11.105.

Oboh, G.; Ademiluyi, A.O.; Agunloye, O.M.; Ademosun, A.O.; Ogunsakin, B.G. J. Diet. Suppl. 2019, 16, 105-118. DOI: 10.1080/19390211.2018.1438553.

Magaji, U.F.; Sacan, O.; Yanardag, R. S. Afr. J. Bot. 2020, 128, 225-230. DOI: https://doi.org/10.1016/j.sajb.2019.11.024.

Ramkissoon, J.S.; Mahomoodally, M.F.; Ahmed, N.; Subratty, A.H. Asian Pac. J. Trop. Med. 2013, 2013, 561-569. DOI: https://doi.org/10.1016/S1995-7645(13)60097-8.

Khan, M.; Liu, H.; Wang, J.; Sun, B. Food Res. Int. 2020, 130, 108933. DOI: https://doi.org/10.1016/j.foodres.2019.108933.

Yeh, W.J.; Hsia, S.M.; Lee, W.H.; Wu, C.H. J. Food Drug. Anal. 2017, 25, 84-92. DOI: https://doi.org/10.1016/j.jfda.2016.10.017.

Matsabisa, M.G.; Chukwuma, C.I.; Chaudhary, S.K. S. Afr. J. Bot. 2019, 121, 121-127. DOI: https://doi.org/10.1016/j.sajb.2018.10.028.

Yan, J.K.; Wu, L.X.; Qiao, Z.R.; Cai, W.D.; Ma, H. Food Chem. 2019, 271, 588-596. DOI: https://doi.org/10.1016/j.foodchem.2018.08.012.

Nickavar, B.; Yousefian, N. Iran. J. Pharm. Res. 2009, 8, 53-57. DOI:10.22037/IJPR.2010.788.

Moses, Z.Z.; Haruna, G.S.; Odoh, O.J.; Danladi, G.J.; Sani, M.H. J. Biol. Res. Develop. 2020, 1, 1-14.

Wu, H.; Xu, B. Int. J. Food Prop. 2014, 17, 599-609. DOI: https://doi.org/10.1080/10942912.2012.654562.

Ahmed, M.U.; Ibrahim, A.; Dahiru, N.J.; Mohammed, H.U.S. Clin. Med. Insights Endocrinol. Diabetes. 2020, 13, 1-5. DOI: https://doi.org/10.1177/1179551420963106.

Sadeghi, M.; Moradi, M.; Madanchi, H.; Johari B. In Silico Pharmacol. 2021, 9, 11. DOI: 10.1007/s40203-020-00072-9.

Ghajarbeygi, P.; Hajhoseini, A.; Hosseini, M.S.; Sharifan, A. J. Pharmacopuncture. 2019, 22, 231-238. DOI: 10.3831/KPI.2019.22.031.

Jung, H.Y.; Lee, K.Y.; Yoo, D.Y.; Kim, J.W.; Yoo, M.; Lee, S.; Yoo, K.Y.; Yoon, Y.S.; Choi, J.H.; Hwang. I.K. BMC Complement. Altern. Med. 2016, 16, 431. DOI: 10.1186/s12906-016-1384-6.

Veerakumari, L.; Chitra, N. Int. J Sci. Res. 2016, 5, 883, 87.

Tewari, A.; Jain, B.; Dhamannapatil, P.S.; Saxena, M.K. EC Microbiol. 2018, 3, 71-77.

Mohsenipour, Z.; Hassanshahian, M. Jundishapur J. Microbiol. 2015, 8, 18971. DOI: 10.5812/jjm.18971v2.

Ratthawongjirakul, P.; Thongkerd, V. Songklanakarin J. Sci. Technol. 2016, 38, 381–389.

Farrag, H.A.; Hosny, A.E.D.M.; Hawas, A.M.; Hagras, S.A.; Helmy, O.M. Saudi Pharm. J. 2019, 27, 830-840. DOI: https://doi.org/10.1016/j.jsps.2019.05.004.

Furner-Pardoe, J.; Anonye, B.O.; Cain, R.; Moat, J.; Ortori, C.A.; Lee, C.; Barrett, D.A.; Corre, C.; Harrison, F. Sci. Rep. 2020, 10, 12687. DOI: https://doi.org/10.1038/s41598-020-69273-8.

Mendes, T.C.; Lívero, F.A.R.; Souza, P.; Gebara, K.S.; Junior, A.G. Curr. Pharm. Des. 2020, 26, 176-190. DOI: https://doi.org/10.2174/1381612825666191216125135.

Emon, N.U.; Kaiser, M.; Islam, I.; Kabir, M.F.I.; Mohammad, J.U.; Mifta, A.J.; Saifullah, M.T.; Abu, N.M.R.; Safaet, A.; Mohammad, N.I. J. Adv. Biotechnol. Exp. Ther. 2020, 3, 158-164. DOI: https://doi.org/10.5455/jabet.2020.d121.

Batiha, E.G.; Magdy, B.A.; Wasef, G.L.; Elewa, Y.H.; Al-Sagan, A.A.; El-Hack, A.; Mohamed, E.; Taha, A.E.; Abd-Elhakim, M.Y.; Prasad, D.H. Nutrients. 2020, 12, 872. DOI: https://doi.org/10.3390/nu12030872.

Ansari, F.; Mohammadi, N.S.; Naderi, G.; Sabet, M.S.; Karimi, A. Iran. J. Ped. Hematol. Oncol. 2011, 2, 48-52.

Alrumaihi, F. Pharmacogn. J. 2020, 12, 1463-74. doi: 10.5530/pj.2020.12.201.

Omale, J. and Alewo, I.M. Am. J. Phytomed. Clin. Ther. 2014, 2, 861-869.

Franco, R.R.; Zabisky, L.F.R.; Lima, J.J.P.; Alves, V.H.M.; Justino, A.B.; Saraiva, A.L.; Goulart, L.R.; Espindola, F.S. J. Ethnopharmacol. 2020, 261, 113132. DOI:10.1016/j.jep.2020.113132.

Karim, M.A.; Islam, M.A.; Islam, M.M.; Rahman, M.S.; Sultana, S.; Biswas, S.; Hosen, M.J.; Mozumder, K.; Rahman, M.M; Hasan, M.N. Clin. Phytoscience. 2020, 6, 1-12.

Azantsa, B.G.; Mbong, M.A.A.; Takuissu, G.R.; Matsinkou, R.S.; Djuikoo, I.L.; Youovop, J.F.; Ngondi, J.L.; Oben, J.E. J. Food Res. 2019, 8, 89. DOI: https://doi.org/10.5539/jfr.v8n4p89.

Suboh, M.S.; Bilto, Y.Y.; Aburjai, T.A. Phytother. Res. 2004, 18, 280–284. DOI: https://doi.org/10.1002/ptr.1380.

Published
09-23-2021