Novel and Reusable Mesoporous Silica Supported 4-Methylbenzenesul- fonate-functionalized Ionic Liquids for Room Temperature Highly Efficient Preparation of 2,4,5-Triaryl-1H-imidazoles

Authors

  • Yang Liu China Three Gorges University
  • Qi Rong China Three Gorges University
  • Chen Chen Jiangsu University of Science and Technology
  • Hu Yu Lin China Three Gorges University http://orcid.org/0000-0003-2139-5032

DOI:

https://doi.org/10.29356/jmcs.v65i4.1529

Keywords:

Mesoporous silica, supported ionic liquid, high efficient, 2,4,5-triaryl-1H-imidazoles, synergetic and recyclable catalyst

Abstract

Abstract. A series of mesoporous materials supported ionic liquids were prepared and tested as effective and practical catalysts for the synthesis of 2,4,5-triaryl-1H-imidazoles. The effects of type of catalysts, catalyst amount, and catalyst stability have also been investigated in detail, the catalyst Ti-SBA-15@ILTsO exhibited excellent activity in excellent yields of 92 % ~ 99 % with low catalyst amount at room temperature within 1 h. In addition, the supported ionic liquid can be easily recovered and reused for six times with satisfactory catalytic activity. Furthermore, a general synergetic catalytic mechanism for the reaction was proposed. Maybe this work employing Ti-SBA-15@ILTsO as highly efficient and stable catalyst for the synthesis of 2,4,5-triaryl-1H-imidazoles has potential commercial applications.

 

Resumen. Se prepararon y probaron una serie de materiales mesoporosos soportados con líquidos iónicos como catalizadores eficaces y prácticos para la síntesis de 2,4,5-triaryl-1H-imidazoles. También se investigaron en detalle los efectos del tipo de catalizadores, la cantidad de catalizador y la estabilidad del catalizador. El catalizador Ti-SBA-15@ILTsO mostró una excelente actividad con rendimientos excelentes del 92 % ~ 99% con una baja cantidad de catalizador a temperatura ambiente en 1 h. Además, el líquido iónico soportado puede recuperarse fácilmente y reutilizarse durante seis veces con una actividad catalítica satisfactoria. Por otro lado, se propuso un mecanismo catalítico sinérgico general para la reacción. Este trabajo que emplea Ti-SBA-15@ILTsO como catalizador altamente eficiente y estable para la síntesis de 2,4,5-triaril-1H-imidazoles puede tener aplicaciones potencialmente comerciales.

Downloads

Download data is not yet available.

Author Biographies

Yang Liu, China Three Gorges University

College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials.

Qi Rong, China Three Gorges University

College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials.

Chen Chen, Jiangsu University of Science and Technology

College of Environmental and Chemical Engineering.

Hu Yu Lin, China Three Gorges University

College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials.

References

Shabalin, D. A.; Camp, J. E. Org. Biomol. Chem. 2020, 18, 3950-3964.

Ren, Z. L.; Cai, S.; Liu, Y. Y.; Xie, Y. Q.; Yuan, D.; Lei, M.; He, P.; Wang, L. J. Org. Chem. 2020, 85, 11014-11024.

Wang, L.; Chen, H.; Zhang, N.; Liu, X.; Zheng, K. Tetrahedron Lett. 2021, 64, 152735.

Jin, X.; Chen, H.; Zhang, W.; Wang, B.; Shen, W.; Lu, H. Appl. Organometal. Chem. 2018, 32, e4577.

Hojati, S. F.; Nezhadhoseiny, S. A.; Beykzadeh, Z. Monatsh. Chem. 2013, 144, 387-390.

Reddy, M. V.; Jeong, Y. T. J. Fluorine Chem.2012, 142, 45-51.

Munsur, A. Z. A.; Roy, H. N.; Imon, M. K. Arab. J. Chem. 2020, 13, 8807-8814.

Shaabani, A.; Afshari, R.; Hooshmand, S. E.; Nejad, M. K. ACS Sustain. Chem. Eng. 2017, 5, 9506-9516.

Jayram, J.; Jeena, V. RSC Adv. 2018, 8, 37557-37563.

Kumar, G.; Mogha, N. K.; Kumar, M.; Subodh, Masram, D. T. Dalton Trans. 2020, 49, 1963-1974.

Naeimi, H.; Aghaseyedkarimi, D. New J. Chem. 2015, 39, 9415-9421.

Allahresani, A.; Naghdi, E.; Nasseri, M. A. Inorg. Chem. Commun. 2020, 119, 108137.

Shaabani, A.; Afshari, R.; Hooshmand, S. E. New J. Chem. 2017, 41, 8469-8481.

Sangshetti, J. N.; Kokare, N. D.; Kotharkara, S. A.; Shinde, D. B. J. Chem. Sci. 2008, 120, 463-467.

Zarnegar, Z.; Safari, J. RSC Adv. 2014, 4, 20932-20939.

Waheed, M.; Ahmed, N.; Alsharif, M. A.; Alahmdi, M. I.; Mukhtar, S. ChemistrySelect 2017, 2, 7946-7950.

Nguyen, T. T.; Le, N. P. T.; Nguyen, T. T.; Tran, P. H. RSC Adv. 2019, 9, 38148-38153.

Kumar, D.; Kommi, D. N.; Bollineni, N.; Patel, A. R.; Chakraborti, A. K. Green Chem. 2012, 14, 2038-2049.

Vinoth, G.; Indira, S.; Bharathi, M.; Archana, G.; Alves, L. G.; Martins, A. M.; Bharathi, K. S. Inorg. Chim. Acta 2021, 516, 120089.

Pervaiz, S.; Mutahir, S.; Ullah, I.; Ashraf, M.; Liu, X.; Tariq, S.; Zhou, B. J.; Khan, M. A. Chem. Biodivers. 2020, 17, e1900493.

Nordness, O.; Brennecke, J. F. Chem. Rev. 2020, 120, 12873-12902.

Hu, Y.; Zhang, R. L.; Fang, D. Environ. Chem. Lett. 2019, 17, 501-508.

Itoh, T.; Takagi, Y. ACS Sustain. Chem. Eng. 2021, 9, 1443-1458.

Tapia, M. G.; Montes, A. C.; Morcillo, E. M.; Huguet, M. T. G.; de Torres, N. H. W.; Ríos R. C. J. Mex. Chem. Soc. 2014, 58, 16-21.

Doherty, A. P.; Patterson, S.; Diaconu, L.; Graham, L.; Barhdadi, R.; Puchelle, V.; Wagner, K.; Office, D. L.; Chen, J.; Wallace, G. G. J. Mex. Chem. Soc. 2015, 59, 263-268; Guerrero R. L.; Rivero, I. A. J. Mex. Chem. Soc. 2012, 56, 201-206.

Banothu, J.; Gali, R.; Velpula, R.; Bavantula, R. Arab. J. Chem. 2017, 10, S2754-S2761.

Hilal, D. A.; Hanoon, H. D. Res. Chem. Intermed. 2020, 46, 1521-1538.

Fehrmann, R.; Riisager, A.; Haumann, M. Supported ionic liquids: Fundamentals and applications, Wiley-VCH, Weinheim, 2014; Mohamedali, M.; Ibrahim, H.; Henni, A. Micropor. Mesopor. Mater. 2020, 294, 109916.

Gupta, R.; Yadav, M.; Gaur, R.; Arora, G.; Yadav, P.; Sharma, R. K. Mater. Horiz. 2020, 7, 3097-3130.

Sudarsanam, P.; Zhong, R.; den Bosch, S. V.; Coman, S. M.; Parvulescu, V. I.; Sels, B. F. Chem. Soc. Rev. 2018, 47, 8349-8402.

Yao, N.; Chen, C.; Li, D. J.; Hu, Y. L. J. Environ. Chem. Eng. 2020, 8, 103953.

Kukawka, R.; Pawlowska-Zygarowicz, A.; Dzialkowska, J.; Pietrowski, M.; Maciejew, H.; Bica, K.; Smiglak, M. ACS Sustain. Chem. Eng. 2019, 7, 4699-4706.

Dhar, A.; Kumar, N. S.; Khimani, M.; Al-Fatesh, A. S.; Ibrahim, A. A.; Fakeeha, A. H.; Patel, H.; Vekariya, R. L. RSC Adv. 2020, 10, 15282-15292.

Verma, P.; Kuwahara, Y.; Mori, K.; Raja, R.; Yamashita, H. Nanoscale 2020, 12, 11333-11363; Awoke, Y.; Chebude, Y.; Márquez-Álvarez, C.; Díaz, I. Catal. Today 2020, 345, 190-200; Wang, S.; Li, Z.; Yi, W.; Fu, P.; Zhang, A.; Bai, X. Renew. Energy 2021, 163, 1673-1681; Miao, K.; Luo, X.; Wang, W.; Guo, J.; Guo, S.; Cao, F.; Hu, Y.; Chang, P.; Feng, G. Micropor. Mesopor. Mater. 2019, 289, 109640; Ruchomski, L.; Pikus, S.; Pikula, T.; M?czka, E.; Kosmulski, M. Colloid. Surface. A 2020, 599, 124922.

Dokhaee, Z.; Ghiaci, M.; Farrokhpour, H.; Buntkowsky, G.; Breitzke, H. Ind. Eng. Chem. Res. 2020, 59, 12632-12644.

Huang, Y.; Zheng, K.; Liu, X.; Meng, X.; Astruc, D. Inorg. Chem. Front. 2020, 7, 939-945.

Chatterjee, S.; Bhaduri, K.; Modak, A.; Selvaraj, M.; Bal, R.; Chowdhury, B.; Bhaumik, A. Mol. Catal. 2021, 502, 111381.

Ziarani, G. M.; Rohani, S.; Ziarati, A.; Badiei, A. RSC Adv. 2018, 8, 41048-41100.

Verma, P.; Kuwahara, Y.; Mori, K.; Raja, R.; Yamashita, H. Nanoscale 2020, 12, 11333-11363.

Downloads

Published

2021-09-23

Issue

Section

Regular Articles