Enhanced Enzymatic Saccharification of Mixed Sawdust Wastes: Comparison of SPORL, Dilute Acid, Formic Acid, and Ethanol Organosolv Pretreatments

  • Yuan Liang Shandong University of Science and Technology
  • Yanbo Yin Shandong University of Science and Technology
  • Haifeng Zhou Shandong University of Science and Technology
  • Yuanyu Tian Shandong University of Science and Technology
Keywords: Mixed sawdust wastes, pretreatments, enzymatic hydrolysis, delignification

Abstract

Abstract. Utilization of the huge quantity of sawdust wastes is urgent. In this study, SPORL, dilute acid pretreatment (DA), formic acid pretreatment (FA), ethanol pretreatment (EtOH/H2O), and sulfuric acid catalyzed ethanol pretreatment (EtOH/H2O/H2SO4), on improving enzymatic hydrolysis of mixed sawdust wastes were comprehensively compared. EtOH/H2O/H2SO4 was the most effective pretreatment in lignin removal from sawdust fiber cell wall, while FA was much more effective in hemicellulose removal. After the pretreatments, the crystallinity of cellulose increased because of the removal of amorphous hemicellulose and lignin. Moreover, the fiber surface became coarse and porous, especially after EtOH/H2O/H2SO4, the structure was destroyed into fragments, which enhanced the cellulase accessibility of cellulose. Therefore, the glucose yield of EtOH/H2O/H2SO4 pretreated substrate was highest among these five pretreatments, achieved at 91.4% with a cellulase loading of only 10 FPU/g glucan.

 

Resumen. Es urgente aprovechar la gran cantidad de residuos de aserrín. En este estudio, SPORL, pretratamiento con ácido diluido (DA), pretratamiento con ácido fórmico (FA), pretratamiento con etanol (EtOH/H2O) y pretratamiento con etanol catalizado con ácido sulfúrico (EtOH/H2O/H2SO4), sobre la mejora de la hidrólisis enzimática de residuos de aserrín mezclado fueron comparados de manera integral. EtOH/H2O/H2SO4 fue el pretratamiento más eficaz para eliminar la lignina de la pared celular de la fibra de aserrín, mientras que el FA fue mucho más eficaz para eliminar la hemicelulosa. Después de los pretratamientos, la cristalinidad de la celulosa aumentó debido a la eliminación de hemicelulosa amorfa y lignina. Además, la superficie de la fibra se volvió gruesa y porosa, especialmente después de EtOH/H2O/H2SO4, la estructura se destruyó en fragmentos, lo que mejoró la accesibilidad de celulasa de la celulosa. Por lo tanto, el rendimiento de glucosa del sustrato pretratado con EtOH/H2O/H2SO4 fue el más alto entre estos cinco pretratamientos, alcanzado al 91,4% con una carga de celulasa de solo 10 FPU / g de glucano.

Author Biographies

Yuan Liang, Shandong University of Science and Technology

Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology

Yanbo Yin, Shandong University of Science and Technology

Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology

Haifeng Zhou, Shandong University of Science and Technology

Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology

Yuanyu Tian, Shandong University of Science and Technology

Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemical and Biological Engineering, Shandong University of Science and Technology.

State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China).

 

References

Sikarwar, V. S.; Zhao, M.; Clough, P.; Yao, J.; Zhong, X.; Memon, M. Z.; Shah, N.; Anthony, E. J.; Fennell, P. S. Energy Environ. Sci. 2016, 9, 2939-2977.

Wang, Z.; Hou, X.; Sun, J.; Li, M.; Chen, Z.; Gao, Z. Bioresource. Technol. 2018, 254, 145-150.

Heinimö, J.; Pakarinen, V.; Ojanen, V.; Kässi, T. International bioenergy trade-scenario study on international biomass market in 2020. Lappeenranta University of Technology, Finland, 2007.

Shaheen, T. I.; Emam, H. E. Int. J. Biol. Macromol. 2018, 107, 1599-1606.

Asada, C.; Sasaki, C.; Nakamura, Y. Waste Biomass Valorization. 2019, 10, 433-439.

Ruiz Cuilty, K.; Ballinas Casarrubias, L.; Rodríguez de San Miguel, E.; de Gyves, J.; Robles Venzor, J. C.; González Sánchez, G. Biomass Bioenergy. 2018, 111, 114-124.

Zhao, X.; Zhang, L.; Liu, D. Biofuels, Bioprod. Bioref. 2012, 6, 465-482.

Sun, Y.; Cheng ,J. Bioresource. Technol. 2002, 83, 1-11.

Zhao, X.; Zhang, L.; Liu, D. Biofuels, Bioprod. Bioref. 2012, 6, 561-579.

Zabed, H.; Sahu, J. N.; Suely, A.; Boyce, A. N.; Faruq, G. Renewable Sustainable Energy Rev. 2017, 71, 475-501.

Zhang, J.; Zhou, H.; Liu, D.; Zhao, X., in Lignocellulosic Biomass to Liquid Biofuels, A. Yousuf, D. Pirozzi, F. Sannino, Academic Press, 2020, 17-65.

Dziekonska Kubczak, U.; Berlowska, J.; Dziugan, P.; Patelski, P.; Balcerek, M.; Pielech Przybylska, K.; Czyzowska, A.; Domanski, J. BioResources. 2018, 13, 6970-6984.

Jin, S.; Zhang, G.; Zhang, P.; Li, F.; Fan, S.; Li, J. Bioresource. Technol. 2016, 205, 34-39.

Lai, C.; Yang, B.; He, J.; Huang, C.; Li, X.; Song, X.; Yong, Q. Bioresource. Technol. 2018, 269, 18-24.

Zhu, J. Y.; Pan, X. J.; Wang, G. S.; Gleisner, R. Bioresource. Technol. 2009, 100, 2411-2418.

Zhou, H.; Zhu, J. Y.; Luo, X.; Leu, S.-Y.; Wu, X.; Gleisner, R.; Dien, B. S.; Hector, R. E.; Yang, D.; Qiu, X.; Horn, E.; Negron, J. Ind. Eng. Chem. Res. 2013, 52, 16057-16065.

Zhou, H.; Zhu, J. Y.; Gleisner, R.; Qiu, X.; Horn, E.; Negrón, J. Holzforschung. 2016, 70, 21-30.

Chen, H.; Zhao, J.; Hu, T.; Zhao, X.; Liu, D. Appl. Energ. 2015, 150, 224-232.

López, F.; Pérez, A.; García, J. C.; Feria, M. J.; García, M. M.; Fernández, M. Chem. Eng. J. 2011, 166, 22-29.

Salapa, I.; Katsimpouras, C.; Topakas, E.; Sidiras, D. Biomass Bioenergy. 2017, 100, 10-16.

Li, Z. Q.; Jiang, Z. H.; Fei, B. H.; Pan, X. J.; Cai, Z. Y.; Liu, X. E.; Yu ,Y. BioResources. 2012, 7, 3452-3462.

Zhao, X.; Liu, D. Bioresource. Technol. 2012, 117, 25-32.

Mou, H.; Wu, S. Cellulose. 2017, 24, 85-94.

Wood, T. M.; Bhat, K. M. Method. Enzymol. 1988, 160, 87-112.

Zhou, H.; Zhu, J. Y.; Gleisner, R.; Qiu, X.; Horn, E.; Sukumaran, R. K. Frontiers in Energy Research. 2015, 3, 16.

Liang, Y.; Duan, W.; An X.; Qiao, Y.; Tian, Y.; Zhou, H. Bioresource. Technol. 2020, 310, 123389.

Shi, X.; Zhao, B.; Zhou, H.; Tian, Y.; Qiao, Y.; Ji, B. ChemistrySelect. 2019, 4, 7844-7850.

Jin, S.; Zhang, G.; Zhang, P.; Li, F.; Wang, S.; Fan, S.; Zhou, S. Bioresource. Technol. 2016, 221, 26-30.

Pan, X.; Xie, D.; Yu, R. W.; Saddler, J. N. Biotechnol. Bioeng. 2008, 101, 39-48.

Cui, X.; Zhao, X.; Zeng, J.; Loh, S. K.; Choo, Y. M.; Liu, D. Bioresource. Technol. 2014, 166, 584-591.

Sindhu, R.; Binod, P.; Satyanagalakshmi, K.; Janu, K. U.; Sajna, K. V.; Kurien, N.; Sukumaran, R. K.; Pandey, A. Appl. Biochem. Biotech. 2010, 162, 2313-2323.

Pan X.; Xie D.; Gilkes N.; Gregg D. J.; Saddler J. N., in Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals, B. H. Davison, B. R. Evans, M. Finkelstein, J. D. McMillan, Humana Press, Totowa, NJ, 2005, 1069-1079.

Pielhop, T.; Larrazábal, G. O.; Studer, M. H.; Brethauer, S.; Seidel, C.-M.; von Rohr, P. R. Green Chem. 2015, 17, 3521-3532.

Hsu, T. C.; Guo, G. L.; Chen, W. H.; Hwang, W. S. Bioresource. Technol. 2010, 101, 4907-4913.

Huijgen, W. J. J.; Smit, A. T.; Reith, J. H.; Uil, H. d. J. Chem. Technol. Biotechnol. 2011, 86, 1428-1438.

Zhang, H.; Zhang, S.; Yuan, H.; Lyu, G.; Xie, J. Bioresource. Technol. 2018, 249, 395-401.

Valenzuela, R.; Priebe, X.; Troncoso, E.; Ortega, I.; Parra, C.; Freer, J. Ind. Crop. Prod. 2016, 86, 79-86.

Sannigrahi, P.; Kim, D. H.; Jung, S.; Ragauskas, A. Energy Environ. Sci. 2011, 4, 1306-1310.

Li, H.-Y.; Chen, X.; Wang, C.-Z.; Sun, S.-N.; Sun, R.-C. Biotechnol. Biofuels. 2016, 9, 166.

Li, W.; Liu, Q.; Ma, Q.; Zhang, T.; Ma, L.; Jameel, H.; Chang, H.-m. Bioresource. Technol. 2016, 219, 753-756.

Ebrahimi, M.; Caparanga, A. R.; Ordono, E. E.; Villaflores O. B. Renew. Energ. 2017, 109, 41-48.

He, Y.; Pang, Y.; Liu, Y.; Li X.; Wang, K. Energ. Fuel. 2008, 22, 2775-2781.

Xiao, B.; Sun, X. F.; Sun, R. Polym. Degrad. Stabil. 2001, 74, 307-319.

Published
07-01-2021