Short Synthesis of a New Cyclopentene-1,3-dione Derivative Isolated from Piper carniconnectivum

Authors

  • Luiz C. Dias Universidade Estadual de Campinas
  • Simone B. Shimokomaki Universidade Estadual de Campinas
  • Robson T. Shiota Universidade Estadual de Campinas

Keywords:

Aldol reaction, allylic alcohol oxidation, cyclopentenedione derivative, Piper carniconnectivum

Abstract

Abstract. The total synthesis of cyclopentene-1,3-dione (1), a new natural cyclopentenedione derivative isolated from the roots of Piper carniconnectivum, is described in 8 steps and 11% overall yield from 2-acetylfuran, giving a 57:43 mixture of the two possible geometric isomers 1a and 1b.

Downloads

Download data is not yet available.

Author Biographies

Luiz C. Dias, Universidade Estadual de Campinas

Instituto de Química

Simone B. Shimokomaki, Universidade Estadual de Campinas

Instituto de Química

Robson T. Shiota, Universidade Estadual de Campinas

Instituto de Química

References

1. Facundo, V. A.; Sá , A. L.; Silva, S. A. F.; Morais, S. M.; Matos, C. R. R.; Braz-Filho, R.; J. Braz. Chem. Soc. 2004, 15, 140.
2. Ribeiro, J. E. L. da S.; Hopkins, M. J. G.; Vincentin, A.; Sothers, C. A.; Costa, M. A. da S.; de Brito, J. M.; de Souza, M. A. D.; Martins, L. H. P.; Lohmann, L. G.; Assunção, P. A. C. L.;
Pereira, E. da C.; Mesquita, M. R.; Procópio, L. C.; Flora da Reserva Ducke – Guia de Identificação das Plantas Vasculares de uma Floresta de Terra-Firme na Amazônia Central, INPADFID: Manaus, Amazonas, Brasil, 1999. p. 181.
3. For other compounds isolated from the Piper genus, see: Parmar, V. S.; Jain, S. C.; Bisht, K. S.; Jain, R.; Taneja, P.; Jha, A.; Tyagi, O. D.; Prasad, A. K.; Wengel, J.; Olsen, C. E.; Boll, P. M.; Phytochemistry 1997, 46, 597.
4. The numbering of (1) as well as of each intermediate follows that suggested in reference 1.
5. West, F. G.; Gunawardena, G. U.; J. Org. Chem. 1993, 58, 2402. Furylcarbinol (5) could also be obtained by the reaction of 2-lithium furan with acetaldehyde in 84% yield.
6. Piancatelli, G.; Scettri, A.; David, G.; D’Auria, M.; Tetrahedron 1978, 34, 2775; West, F. G.; Gunawardena, G. U.; J. Org. Chem. 1993, 58, 5043; Piancatelli, G.; D’Auria, M.; D’Onofrio, F.; Synthesis 1994, 867.
7. Scettri, A.; Piancatelli, G.; D’Auria, M.; David, G.; Tetrahedron 1979, 35, 135; Shono, T.; Hamaguchi, H.; Aoki, K.; Chem. Lett. 1977, 1053; Csáky, A. G.; Mba, M.; Plumet, J.; J. Org.
Chem. 2001, 66, 9026; Csáky, A. G.; Mba, M.; Plumet, J.; Synlett 2003, 2092.
8. Corey, E. J.; Gilman, N. W.; Ganem, B. E.; J. Am. Chem. Soc. 1968, 90, 5616.
9. For large scale preparations of cyclopentenedione 12, the use of Jones oxidation conditions is recommended. See: Lola, D.; Belakovs, S.; Gavars, M.; Turovskis, I.; Kemme, A.; Tetrahedron 1998, 54, 1589.
10. Olivieri, A. C.; González-Sierra, M.; Rúveda, E.; A.; J. Org. Chem. 1986, 51, 2824.
11. Mancuso, A. J.; Swern, D.; Synthesis 1981, 165.
12. New compounds and the additional isolated intermediates gave satisfactory 1H and 13C NMR, IR, HRMS and analytical data. Yields refer to chromatographically and spectroscopically homogeneous materials.

Downloads

Published

2020-08-07

Issue

Section

Short Report