An Alternative Approach to Aminodiols from Baylis-Hillman Adducts. Stereoselective Synthesis of Chloramphenicol, Fluoramphenicol and Thiamphenicol

Authors

  • Cristiano R. Mateus Universidade Estadual de Campinas
  • Fernando Coelho Universidade Estadual de Campinas

Keywords:

Chloramphenicol, Baylis-Hillman, fluoramphenicol, thiamphenicol, α-hydroxymethylketones

Abstract

Abstract. We describe herein a new approach for the stereoselective synthesis of broad spectrum antibiotics from Baylis-Hillman adducts. The strategy is based on the preparation of an ene-carbamate directly from a Baylis-Hillman adduct using a Curtius rearrangement reaction. Stereoselective hydroboration furnished a mixture of diastereoisomeric aminoalcohols (syn and anti). After chromatographic separation, the syn diastereoisomer was directly transformed into the antibiotics.

 

Downloads

Download data is not yet available.

Author Biographies

Cristiano R. Mateus, Universidade Estadual de Campinas

Instituto de Química

Fernando Coelho, Universidade Estadual de Campinas

Instituto de Química

References

1. Aguilar, L.; Gimenez, M. J.; Garcia-Rey, C.; Martin, J. E.; J. Antimicrob. Chemother. 2002, 50, 93.
2. Lautenbach, E.; Gould, C. V.; La Rosa, L. A.; Marr, A. M.; Fishman, N. O.; Becker, W. B.; Nachamkin, I.; Int. J. Antimicrob. Agents 2004, 23, 200; Boulos, A.; Rolain, J. M.; Raoult, D.; Antimicrob. Agents. Chemother. 2004, 48, 747; Zhanel, G. G.; Laing, N. M.; Nichol, K. A.; Palatvek, L. P.; Noreddin, A.; Hisanaga, T.; Johnson, J. L.; Hoban, D. J.; J. Antimicrob. Chemother. 2003, 52, 382; Cunrie, B. J.; Eur. Respi. J. 2003, 22, 542.
3. Xaplanteri, M. A.; Andreou, A.; Dinos, G. P.; Kalpaxis, D. L.; Nucleic Acids Res. 2003, 32, 5074; Isenberg, S. J.; J. AAPOS 2003, 7, 307.
4. Ungheri, D.; Licciardello, L.; PCT Int. Appl. WO 060344, 2001 (CA 135:162487); Colombo, G.; Ungheri, D.; Licciardello, L.; Giromondo, M.; Drago, L. PCT Int. Appl. WO 076585, 2001 (CA 135: 198756).
5. Ehrlich, J.; Bartz, Q. R.; Smith, R. M.; Joslyn, D. A.; Burkholder, P. R.; Science 1947, 106, 417; Bartz, Q.R.; J. Biol. Chem. 1948, 172, 445; Smith, R. M.; Joslyn, D. A.; Gruhzit, O. M.; McLean, W. I.; Penner, M. A.; Ehrlich, J.; J. Bacteriol. 1948, 55, 425; Bartz, Q.R.; J. Clin. Invest. 1949, 28, 1051.
6. For examples of classical industrial synthesis of chloramphenicol and related antibiotics, see: Ehrlich, J.; Kirk- Othmer Encyclopedia of Chemical Technology, John Wiley & Sons: New York, 1978, vol. 2., p. 920.
7. For some syntheses of racemic chloramphenicol, see: Controulis, J.; Rebstock, M. C.; Crooks, Jr., H. M.; J. Am. Chem. Soc. 1949, 71, 2463; Long, L. M.; Troutman, H. D.; J. Am. Chem. Soc. 1949, 71, 2469 and 2473; Ehrhart, G.; Siedel, W.; Nahm, H.; Chem. Ber. 1957, 90, 2088; Horak, V.; Moezik, F.; Klein, R. F. X.; Giordano, C.; Synthesis 1984, 839; Hazra, B. G.; Pore, V. S.; Maybhate, S. P.; Synth. Commun. 1997, 27, 1857.
8. For some chiral syntheses of chloramphenicol and fluoramphenicol, see: Chenevert, R.; Thiboutot, S.; Synthesis 1989, 444; Schollkopf, U.;Beulshausen, T.; Liebigs Ann. Chem. 1989, 223; Rao, A. V. R.; Rao, S. P.; Bhanu, M. N.; J. Chem. Soc., Chem.Commun. 1992, 859; Lou, B.-L.; Zhang, Y.-Z.; Dai, L.-X.; Chem. Ind. 1993, 7, 249; Easton, C. J.; Hutton, C. A.; Merrett, M. C.; Tiekink, E. R. T.; Tetrahedron 1996, 52, 7025; Veeresa, G.; Datta, A.; Tetrahedron Lett. 1998, 39, 8503; Corey, E. J.; Choi, S.; Tetrahedron Lett. 2000, 41, 2765; Park, J. N.; Ko, S. Y.; Koh, H. Y.; Tetrahedron Lett. 2000, 41, 5553; Loncaric, C.; Wulff, W. D.; Org. Lett. 2001, 3, 3675; Baskhar, G.; Kumar, V.S.; Rao, B.V.; Tetrahedron:Asymmetry 2004, 15, 1279.
9. For some racemic syntheses of thiamphenicol, see: McCombie, S. W.; Nagabhushan, T. L.; Tetrahedron Lett. 1987, 28, 5395; Giordano, C.; Cavicchioli, S.;Levi, S.; Villa, M.; Tetrahedron Lett. 1988, 29, 5561.
10. For some asymmetric syntheses of thiamphenicol and florfenicol, see: Giordano, C.; Cavicchioli, S.; Levi, S.; Villa, M.; J. Org. Chem. 1991, 56, 6114; Davis, F. A.; Zhou, P.;
Tetrahedron Lett. 1994, 35, 7525; Wu, G.-Z.; Tormos, W. I.; PTC Int. Appl.WO 94/14764, 1994 (CA 121: 133722); Gennari, C.; Pain, G.; Tetrahedron Lett. 1996, 37, 3747; Wu, G.-Z.; Schumacher, D. P.; Tormos, W.; Clark, J. E.; Murphy, B. L.; J. Org. Chem. 1997, 62, 2996; Gennari, C.; Vulpetti, A.;
Pain, G.; Tetrahedron 1997, 53, 5909; Kaptein, B.;Dooren, T. J. G. M. V.; Boesten, W. H. J.; Sonke, T.; Duchateau, A. L. L.; Broxterman, Q. B.; Kamphuis, J.; Org. Process Res. Dev. 1998, 2, 10; Nagabhushan, T.L.; U. S. Patent 4 235 892, 1980 (CA 94: 139433).
11. Rossi, R.C.; Coelho, F.; Tetrahedron Lett. 2002, 43, 2797.
12. Coelho, F.; Veronese, D.; Lopes, E.C.S.; Rossi, R.C.; Tetrahedron Lett. 2003, 44, 5731.
13. For comprehensive reviews on the Baylis-Hillman reaction see: Basavaiah, D.; Rao, A. J.; Satyanarayama, T.; Chem. Rev. 2003, 103, 811; Almeida, W. P.; Coelho, F.; Quim. Nova 2000, 23, 98 (CA 132: 236562e); Ciganek, E.; Org. React. 1997, 51, 201; Basavaiah, D.; Rao, P. D.;. Hyma, R. S.; Tetrahedron 1996, 52, 8001. For some new insights about the mechanism of the Baylis-Hillman reaction see: Santos, L.S.; Pavam, C.H. Almeida, W.P.; Coelho, F.; Eberlin, M.N.; Angew. Chem. Int.
Ed. 2004, 43, 4330.
14. For some examples of the application of Baylis-Hillman adducts as starting material for the synthesis of natural products see: Almeida, W. P.; Coelho, F.; Tetrahedron Lett. 2003, 44, 937;
Feltrin, M. A.; Almeida, W. P.; Synth. Commun. 2003, 33, 1141; Mateus, C. R.; Feltrin, M. P.; Costa, A. M.; Coelho, F.; Almeida, W. P.; Tetrahedron 2001, 57, 6901; Iwabuchi, Y.; Furukawa, M.; Esumi, T.; Hatakeyama, S.; Chem. Commun. 2001, 2030; Iwabuchi, Y.; Sugihara, T.; Esumi, T.; Hatakeyama, S.; Tetrahedron Lett. 2001, 42, 7867; Masunari, A.; Trazzi, G.; Ishida, E.; Coelho, F.; Almeida, W. P.; Synth. Commun. 2001, 31, 2100; Ameer, F.; Drewes, S. E.; Houston-McMillan, M. S.; Kaye, P.T.; S. Afr. J. Chem. 1986, 39, 57; Hofmann, H. M. R.; Rabe, J.; Helv. Chim. Acta 1984, 67, 413; Hofmann, H. M. R.; Rabe, J.; J. Org. Chem. 1985, 50, 3849; Drewes, S. E.; Emslie, N. D.; J. Chem. Soc. Perkin Trans. 1 1982, 2079.
15. Bergmeier, S.C.; Tetrahedron 2000, 56, 2561 and references cited therein; Gonzalez-Resende, M.E.; Jorda-Gregori, M.E.; Sepulveda-Arques, J.; Orena, M.; Tetrahedron:Asymmetry 2004, 15, 419 and references cited therein; Beardsley, D. A.; Fisher, G. B.; Goralski, C. T.; Nicholson, L. W.; Singaram, B.; Tetrahedron Lett. 1994, 35, 1511; Moody, M. H.; Kaptein, B.; Broxterman, Q. B.; Boesten, W. H. J.; Kamphuis, J.; Tetrahedron Lett. 1994, 35, 1777; Sasai, H.; Kim, W.; Suzuki, T.; Shibasaki, M.; Tetrahedron Lett. 1994, 35, 6123.
16. Almeida, W. P.; Coelho, F. Tetrahedron Lett. 1998, 39, 8609; Coelho, F.; Almeida, W. P.; Mateus, C. R.; Veronese, D.; Lopes, E. C. S.; Silveira, G. P. C.; Rossi, R. C.; Pavam, C. H.; Tetrahedron 2002, 58, 7437.
17. Braibante, M.E.F.; Braibante, H.S.; Costenaro, J.H.; Synthesis 1999, 943; van Well, R.M.; Overkleeft, H.S.; van Boom, J.H.; Coop, J.H.; Wang, J.B.; Wang, N.Y.; van der Marel, G.A.;
Overhand, M.; Eur. J. Org. Chem. 2003, 9, 1704; Kedrowski, B.L.; J. Org. Chem. 2003, 68, 5403; Lu, Y.H.; Taylor, R.T.; Heterocycles 2004, 62, 869; O’Connor, P.D.; Mander, L.N.; McLachlan, N.W.; Org. Lett. 2004, 6, 703.
18. Jackson, R.F.W.; Standen, S.P.; Clegg, W.; McCamley, A.; Tetrahedron Lett. 1992, 33, 6197 and references cited therein; Hoffmann, R.W.; Chem. Rev. 1989, 89, 1841; Kahn, S.D.; Pau, C.F.; Chamberlin, A.R.; Hehre, W. J.; J. Am. Chem. Soc. 1987, 109, 650 and references cited therein; Coelho, F.; Almeida, W. P.; Mateus, C. R.; Furtado, L. D.; Gouveia, J. C. F.; ARKIVOC 2003, X, 443; Mateus, C.R.; Almeida, W. P.; Coelho, F.; Tetrahedron Lett. 2000, 41, 2533.
19. Cutler, R.A.; Stenger, R.J.; Suter, C.M.; J. Am. Chem. Soc. 1952, 74, 5475.
20. For some examples of carbamates prepared from Baylis-Hillman adducts, see: Ciclosi, M.; Fava, C.; Galeazzi, R.; Orena, M.; Sepulveda-Arques, J.; Tetrahedron Lett. 2002, 43, 2199;
Mamaghami, M.; Badrian, A.; Tetrahedron Lett. 2004, 45, 1547; Xu, L. W.; Xia, C. G.; Tetrahedron Lett. 2004, 45, 4507.
21. For some industrial strategies for the resolution of racemic mixtures of chloramphenicol and for the inversion of of (2S, 3S) enantiomer, see: Coppi, L.; Giordano, C.; Langoni, A.; Panossian, S. In Chirality in Chemistry II; Collins, A. N.; Sheldrake, G. N; Crosby, J., eds., Wiley: Chichester, 1997, p. 353-362; Dick, H.; Gradel, W. –D.; Weber, M.; D.E. Patent 3543021, 1987 (CA 107: 197794).
22. Iwabuchi, Y.; Nakatami, M.; Yokoyama, N.; Hatakeyama, S.; J. Am. Chem. Soc. 1999, 121, 10219.

Downloads

Published

2020-08-07

Issue

Section

Regular Articles