Bonding Interactions of Metal Clusters [Mn (M= Cu, Ag, Au; n=1-4)] with Ammonia. Are the Metal Clusters Adequate as a Model of Surfaces?

Authors

  • Ana Martínez Universidad Nacional Autónoma de México

Keywords:

Metal clusters, bond lengths, M-N stretching vibrational modes, binding energies, Mulliken atomic charges, adiabatic ionization potentials

Abstract

Abstract. Density Functional (B3LYP/LANL2DZ) calculations for ammonia metal clusters were done in order to obtain bond lengths, M-N stretching vibrational modes, binding energies, Mulliken atomic charges and adiabatic ionization potentials. The results indicate that copper atom forms stronger bonds with ammonia than silver or gold. The bond interaction between Agn and ammonia is the weakest of all the systems. The bond of the ammonia molecule to the metal clusters can be compared with the pyridine-Mn systems. Both molecules present a donation interaction from the lone-pair of electrons on the nitrogen atom. Mulliken atomic charges show a small charge transfer from the NH3 molecule to the metal atom or cluster, suggestive of a dative bond formation. After the charge transfer from the ammonia molecule, the metal clusters undergo a redistribution of the charge and this could be important for the stabilization of the system. In a surface, the redistribution of the charge should be less significant. In this sense, the use of metal clusters as a model of the surface may be an inadequate model.

Downloads

Download data is not yet available.

Author Biography

Ana Martínez, Universidad Nacional Autónoma de México

Instituto de Investigaciones en Materiales

References

1. Reed, M.A.; Zhou, C.; Muller, C.J.; Burgin, T.P.; Tour, J.M.; Science 1997, 278, 252.
2. Chen, J.; Reed, M.A.; Rawlett, A.M.; Tour, J.M.; Science 1999, 286, 1550.
3. Emberly, G.; Kirczenow, G.; Phys. Rev. B 1998, 58, 10911.
4. Hall, L.E.; Reimers, J.R.; Hush, N.S.; Silverbrook, K.; J. Chem. Phys. 2000, 112, 1510.
5. Seminario, J.M.; de la Cruz, C.E.; Derosa, P.A.; J. Am. Chem. Soc. 2001, 123, 5616.
6. W u, D.Y.; Ren, B.; Jiang, Y.X.; Xu, X.; Tian, Z.Q.; J. Phys. Chem. A 2002, 106, 9042.
7. Zhou, M.; Chen, M.; Zhang, L.; Lu, Hao.; J. Phys. Chem. A 2002, 106, 9017.
8. Bérces, A.; Hackett, P.A., Lian, Li.; Mitchell, S.A.; Rayner, D.M.; J. Chem. Phys. 1998, 108, 5476.
9. Martínez, A.; Simard, B.; Salahub, D.R.; J. Phys. Chem. A 2003, 107, 4136.
10. Pedersen, D.; Simard, B.; Martínez, A.; Moussatova, A.; J. Phys. Chem. A 2003, 107, 6464.
11. Simard, B.; Rayner, D. M.; Benichou, E.; Mireles, N.; Tenorio, F. J. Martínez, A.; J. Phys. Chem. A 2003, 107, 9099.
12. Moussatova, A.; Vázquez, M.V.; Martínez, A.; Dolgounitcheva, O.; Zakrzewski, V. G.; Ortiz, J.V.; Pedersen, D.B. Simard. B.; J. Phys. Chem. A 2003, 107, 9415.
13. Wu, D.Y.; Hayashi, M.; Chang, C.H.; Liang, K.K.; Lin, S.H.; J. Chem. Phys. 2003, 118, 4073. and references therein.
14. Lambropoulos, N.A; Reimers, J.R.; J. Chem. Phys. 2002, 116, 10277.
15. Mitchell, S.A.; Lian, L.; Rayner, D.M., Hackett, P.A.; J. Phys. Chem 1996, 100, 15708.
16. Schooss, D.; Gilb, S.; Kaller, J.; Kappes, M.M.; J. Chem. Phys. 2000, 113, 5361.
17. Chan, W.T.; Fournier, R.; Chem. Phys. Lett. 1999, 315, 257.
18. Bauschlicher, C. W.; Langhoff, S. R.; Int. Rev. Phys. Chem. 1990, 9, 149.
19. Veillard, A.; Chem. Rev. (Washington, D.C) 1991, 91, 743.
20. Hackett, P. A.; Mitchell, S. A.; Rayner, D. M.; Simard, B. In Metal-Ligand Interactions; Russo, N.; Salahub, D. R., eds., Kluwer Academic Publishers: Netherlands, 1996, p. 289-324.
21. Doering, W.E.; Nie, S.; J. Phys. Chem. B. 2002, 106, 311.
22. Gaussian 98, Revision A.9; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery,
J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J.V.; Foresman, J.B.; Cioslowski, J.; Stefanov, B.B.; Nanayakkara, A.; Challacombe, M.; Peng, C.Y.; Ayala, P.Y.;
Chen, W.; Wong, M.W.; Andres, J.L.; Replogle, E.S.; Gomperts, R.; Martin, R. L.; Fox, D.J.; Binkley, J.S.; Defrees, D.J.; Baker J.; Stewart, J.P. Head-Gordon, M.; González, C. and Pople,
J.A.; Gaussian Inc.: Pittsburg, P.A. 1995.
23. Becke, A. D.; J. Chem. Phys. 1993, 98, 5648; Lee, C. ; Yang, W.; Parr, R. G.; Phys. Rev. B. 1988, 37, 785; Mielich, B.; Savin, A.; Stoll, H.; Preuss, H.; Chem. Phys. Lett. 1989, 157, 200.
24. Hay, P. J.; Wadt, W. R.; J. Chem. Phys. 1985, 82, 270.
25. Wadt, W. R.; Hay, P.J.; J. Chem. Phys. 1985, 82, 284.
26. Hay, P. J.; Wadt, W. R. ; J. Chem. Phys. 1985, 82, 299.
27. Fuentealba, P.; Simon, Y.; J. Phys. Chem. 1997, 101, 4231; DeProft, F.; Martin, J.M.L.; Geerlings, P.; Chem. Phys. Lett. 1996, 250, 393
28. Siegbahn, P.E.M.; Blomberg, M.R.A.; Annu. Rev. Phys. Chem. 1999, 50, 221; Martínez, A.; Tenorio F. J.; Ortiz, J.V.; J. Phys. Chem. A 2001, 105, 8787; Martínez, A.; Tenorio, F. J. ; Ortiz,
J.V.; J. Phys. Chem. A 2001, 105, 11291; Martínez, A.; Sansores, L.E.; Salcedo, R. ; Tenorio F. J.; Ortiz, J.V.; J. Phys. Chem. A 2002, 106, 10630; Martínez, A.; Tenorio, F.J.; Ortiz, J.V.; J.
Phys. Chem. A 2003, 107, 2589; Tenorio, F.J., Murray, I. Martínez, A.; Klabunde, K.J.; Ortiz, J.V.; J. Chem. Phys. 2004, 120, 7955.
29. Oliveira, A.E.; Guadagnini, P.H.; Haiduke, L.A.; Bruns, R. E.; J. Phys. Chem. A 1999, 103, 4918.
30. Giebðel, T.; Schaff, O,; Lindsay, R.; Baumgärtel, P.; Polcik, M.; Bradshaw, A.M.; J. Chem. Phys. 1999, 110, 9666.
31. Mierzwicki, K.; Latajka, Z.; Chem. Phys. 2001, 265, 301.
32. Hashimoto, K.; Kamimoto, T.; J. Am. Chem. Soc. 1998, 120, 3560.

Downloads

Published

2020-08-07

Issue

Section

Regular Articles