Advanced Electrochemical Oxidation of Methyl Parathion at Boron-Doped Diamond Electrodes
DOI:
https://doi.org/10.29356/jmcs.v58i3.138Keywords:
Methyl parathion, BDDE, TOC, COD, current density, specific energy consumptionAbstract
Plaguicide pollution is a major problem in agricultural zones due to their intensive use to attain increased crop yields. In the present work commercial methyl parathion (MP), was electrochemically degraded in a divided H-type cell equipped with two boron doped diamond electrodes, BDDE and a Nafion cation exchange membrane. High removals (i.e., > 90%) of total organic carbon, TOC and of chemical oxygen demand, COD were obtained after 180 min at a current density, j of 5 mA/cm2 with specific energy consumption, Esp of ca. 200 kWh per kg of COD degraded. These results show that the anodic oxidation route may be an efficient alternative for MP degradation in polluted waters.
Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.