Theoretical and experimental study on a spirocyclic diethyleneglycol silicon complex

Authors

  • J. Oscar C. Jiménez-Halla Universidad de Guanajuato
  • Juvencio Robles Universidad de Guanajuato
  • Manuel Villanueva Universidad de Guanajuato
  • Jorge Cervantes Universidad de Guanajuato
  • Gerardo González-García Universidad de Guanajuato
  • M. Carmen Salazar-Hernández Universidad de Guanajuato
  • Marco A. Leyva-Ramírez Instituto Politécnico Nacional
  • Armando Ramírez-Monroy Instituto Politécnico Nacional
  • J. Alfredo Gutiérrez Universidad de Guanajuato

Keywords:

Silicon, diethyleneglycol, hypervalent compounds, density functional calculations, Fukui function

Abstract

Abstract. In this paper a joint theoretical and experimental study examines the ability of diethyleneglycol as a ligand to form silicon complexes. Due to the known oxophilia of the silicon atom, it would be expected that in the reaction of this tridentate O,O,O-donor-ligand with a reagent such as SiCl4, the corresponding bis-chelate, hexacoordinated neutral silicon complex may be formed. However, a spirocyclic tetracoordinated silicon bis-chelate complex was isolated and no evidence of formation of any hypervalent alkoxysilane was observed. The tetracoordinated compound, 1,4,7,9,12,15-Hexaoxa-8-silaspiro[7.7]pentadecane (8CI,9CI), was crystallized in hexanes from an extract of the product of the aforementioned reaction in methylene chloride and its crystal structure has been determined by X-ray diffraction (C8H16O6Si; orthorhombic; a = 9.2892(3), b = 9.5845(3), c = 12.3748(4) Å; space group P212121; Z = 4). From the same reaction, two other oligomeric tetracoordinated silicon compounds were detected spectroscopically. Furthermore, Density Functional calculations at the BP86/TZ2P level were performed for the bis-chelate compound. We obtained the condensed Fukui functions as well as theoretical NMR chemical shifts to rationalize why the diethyleneglycol acts only as a dianionic, bidentate ligand towards silicon. Our DFT results indicate that the tetracoordinated Si complex is a stable molecule (minimum energy point) whereas the hexacoordinated species is a first-order saddle point (transition state). These results are in agreement and rationalize the experimental findings.

Resumen. Mediante un estudio teórico y experimental se analizó la capacidad ligante del dietilenglicol para formar complejos con el átomo de silicio. Debido a la bien conocida oxofilia del silicio, se esperaría que la reacción de este ligante tridentado O,O,O-donador con un reactivo tal como el SiCl4 daría lugar a la formación del correspondiente complejo bisquelato hexacoordinado neutro de silicio. En su lugar se aisló un complejo espirocíclico bisquelato tetracoordinado y no hubo evidencia de la formación de algún alcoxisilano hipervalente. El compuesto tetracoordinado, 1,4,7,9,12,15-Hexaoxa-8-silaespiro[7.7]pentadecano (8CI,9CI) fue cristalizado en hexano a partir de un extracto del producto de reacción en cloruro de metileno, y se determinó su estructura cristalina mediante difracción de rayos X de cristal único (C8H16O6Si; ortorrómbico; a = 9.2892(3), b = 9.5845(3), c =12.3748(4) Å; grupo espacial P212121; Z = 4). En la misma reacción se detectaron espectroscópicamente dos compuestos de silicio tetracoordinado y oligomérico. También se llevaron a cabo cálculos de Funcionales de la Densidad (DFT) al nivel BP86/TZ2P para el compuesto bisquelato. Se obtuvieron las funciones condensadas de Fukui así como los desplazamientos químicos teóricos de RMN para racionalizar porqué el dietilenglicol actúa como un ligante bidentado dianiónico frente al silicio. Los resultados de DFT indican que el compuesto de silicio tetracoordinado es una molécula estable (punto de mínima energía) mientras que la especie hexacoordinada es un punto silla de primer orden (estado de transición). Los resultados teóricos son consistentes con los hallazgos experimentales y permiten racionalizar estos últimos.

Downloads

Download data is not yet available.

Author Biographies

J. Oscar C. Jiménez-Halla, Universidad de Guanajuato

Facultad de Química

Juvencio Robles, Universidad de Guanajuato

Facultad de Química

Manuel Villanueva, Universidad de Guanajuato

Facultad de Química

Jorge Cervantes, Universidad de Guanajuato

Facultad de Química

Gerardo González-García, Universidad de Guanajuato

Facultad de Química

M. Carmen Salazar-Hernández, Universidad de Guanajuato

Facultad de Química

Marco A. Leyva-Ramírez, Instituto Politécnico Nacional

Centro de Investigación y Estudios Avanzados

Armando Ramírez-Monroy, Instituto Politécnico Nacional

Centro de Investigación y Estudios Avanzados

J. Alfredo Gutiérrez, Universidad de Guanajuato

Facultad de Química

References

1. a) Brook, M. A. Silicon in Organic, Organometallic and Polymer Chemistry, 1st ed., Wiley, New York, 2000; b) Wong, C. Y.; Woollins, J. D. Coord. Chem. Rev. 1994, 130, 175-1241; c) Cheng, H.; Tamaki, R.; Laine, R. M.; Babonneau, F.; Chujo, Y.; Treadwell, D. R. J. Am. Chem. Soc. 2000, 122, 10063-10072.
2. a) Davison, J. B.; Wynne, K. J. Macromolecules 1978, 11, 560-565; b) Lee, P. P. S.; Ngai, T.; Huang, J.-D.; Chi, W.; Fong, W. P.; Ng, D. K. P. Macromolecules 2003, 36, 7527-7533; c) Brus, J.; Kotlík, P. Chem. Mater. 1996, 8, 2739-2744; d) Jitianu, A.; Britchi, A.; Deleanu, C.; Badescu, V.; Zaharescu, M. J. Non-Crystal. Sol. 2003, 319, 263-279.
3. a) Tanev, P. T.; Pinnavaia, T. J. Science 1996, 271, 1267-1269; b) Ulagappan, N.; Battaram, N.; Raju, V. N.; Rao, C. N. R. Chem. Commun. 1996, 2243-2244.
4. Gournis, D.; Georgakilas, V.; Karakassides, M. A.; Bakas, T.; Kordatos, K.; Prato, M.; Fanti, M.; Zerbetto, F. J. Am. Chem. Soc. 2004, 126, 8561-8568.
5. Surivet, F.; My, L. T.; Pascaultj, J.-P.; Quang, T. P. Macromolecules 1992, 25, 4309-4320.
6. a) Rosenheim, A.; Raibmans, B.; Schendel, G. Z. Anorg. Allg. Chem. 1931, 196, 160-176; b) Barnum, D. W. Inorg. Chem. 1972, 11, 1424-1429; c) Azuma, S.; Kojima, M.; Yoshikawa, Y. Inorg. Chim. Acta 1998, 271, 24-28; d) Hahn, W. Makromol. Chem. 1953, 11, 51-63; e) Müller, R.; Heinrich, L. Chem. Ber. 1961, 94, 1943-1951; f) Frye, C. L. J. Org. Chem. 1969, 34, 2496-2499; g) Frye, C. L. J. Am. Chem. Soc. 1970, 92, 1205-1210; h) Frye, C. L.; Vincent, G. A.; Finzel, W. A. J. Am. Chem. Soc. 1971, 93, 6805-6811; i) Kinrade, S. D.; Deguns, E. W.; Gilson, A. – M. E.; Knight, C. T. G. J. Chem. Soc., Dalton Trans. 2003, 3713-3716.
7. a) Klüfers, P.; Benner, K.; Vogt, M. Angew. Chem. Int. Ed. 2003, 42, 1058-1062; b) Klüfers, P.; Benner, K.; Schuhmager, J. Z. Anorg. Allg. Chem. 1999, 625, 541-543; c) Lambert, J. B.; Lu, G.; Singer, S. R.; Kolb, V. M. J. Am. Chem. Soc. 2004, 126, 9611-9625.
8. a) Boudin, R.; Cerveau, G.; Chuit, C.; Corriu, R. J. P.; Reye, C. Organometallics 1988, 7, 1165-1171; b) Laine, R. M. US Patent 5440011
9. a) Krieble, R. H.; Burkhard, C. A. J. Am. Chem. Soc. 1947, 69, 2689-2692; b) D’yakov, V. M.; Kir’yanova, A. N.; Kireeva, L. N.; Chernyshev, A. E.; Bochkarev, V. N.; Androsenko, S. I. Chem. Abst. 110:23956; c) Oddon, G.; Hosseini, M. W. Tetrahedron Lett. 1993, 34, 7413-7416; d) Kupce, E.; Liepins, E.; Zicmane, I.; Lukevics, E. Mag. Res. Chem. 1987, 25, 1084-1086.
10. Kemme, A.; Bleidelis, J.; Urtane, I.; Zelchan, G.; Lukevics, E. J. Organometal. Chem. 1980, 202, 115-121.
11. Kost, D.; Kalikhman, I. Hypervalent Silicon Compounds in:The Chemistry of Organic Silicon Compounds, 1st edition, Rappoport Z. and Apeloig, Y. editors, Wiley, Chichester, 1998, Vol. 2 part 2. Ch. 23, p. 1339.
12. Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. Chem. Rev. 1993, 93, 1371-1448.
13. Kinrade, S. D.; Hamilton, R. J.; Schach, A. S.; Knight, C. T. G. J. Chem. Soc., Dalton Trans. 2001, 961-963.
14. Hahn, F. E.; Keck, M.; Raymond, K.N. Inorg. Chem. 1995, 34, 1402-1407.
15. a) Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules, Breslow, R.; Goodenough, J. B.; Halpern, J.; Rowlinson J. S. eds., Oxford Univ. Press, USA, 1989, p. 99-101; b) Dreizler, R. M.; Gross, E. K. U. Density Functional Theory. An approach to the Quantum Many-Body Problem, Dreizler R. M.; Gross, E. K. U. eds., Springer-Verlag, Berlin, 1990.
16. a) Fuentealba, P.; Pérez, P.; Contreras, R. Chem. Phys. 2000, 113, 2544-2551; b) Fuentealba, P.; Contreras, R. In Reviews of Modern Quantum Chemistry: A Celebration of the Contributions of Robert G. Parr, K. D. Sen, ed., World Scientific, Singapore, 2002, p. 1013 –1052
17. Baerends, E. J.; Autschbach, J. A.; Bérces, A.; Bo, C.; Boerrigter, P. M.; Cavallo, L.; Chong, D. P.; Deng, L.; Dickson, M.; Ellis, D. E.; Fan, L.; Fischer, T. H.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Groeneveld, J. A.; Gritsenko, O. V.; Grüning, M.; Harris, F. E.; van den Hoek, P.; Jacobsen, H.; van Kessel, G.; Kootstra, F.; van Lethe, E.; Osinga, V. P.; Patchkovskii, S.; Philipsen, P. H. T.; Post, D.; Pye, C. C.; Ravenek, W.; Ros, P.; Schipper, P. R. T.; Schreckenbach, G.; Snijders, J. G.; Solà, M.; Swart, M.; Swerhone, D. te Velde, G.; Vernooijs, P.; Versluis, L.; Visser, P.; van Wezenbeek, E.; Wiesenekker, G.; Wolff, S. K.; Woo, T. K.;
Ziegler, T. ADF2003.01, SCM, Theoretical Chemistry; Vrije Universiteit: Amsterdam, 2003.
18. Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-1211.
19. Becke, A. D.Phys. Rev. A, 1988, 38, 3098-3100.
20. Perdew, J. P. Phys. Rev. B 1986, 33, 8822-8824.
21. Portmann, S.; Lüthi, H. P. Chimia 2000, 54, 766 –770.
22. a) Schreckenbach, G.; Ziegler, T. J. Phys. Chem. 1995, 99, 606-611; b) Schreckenbach, G.; Ziegler, T. Int. J. Quantum Chem., 1997, 61, 899-918; c) Wolff, S. K.; Ziegler, T. J. Chem. Phys. 1998, 109, 895-905.
23. Kemmitt, T.; Henderson, W. Aust. J. Chem. 1998, 51, 1031-1035.
24. Williams, E. A. NMR spectroscopy of organosilicon compounds in The Chemistry of Organosilicon Compounds Part 1. Edited by Patai S. and Rappoport, Z. Wiley, New York, 1989.
25. a) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds, 5th ed., John Wiley and Sons, New York, 1991, p. 190-191. b) ibid. p. 15, 19.
26. Sheldrick, G. M. SHELXS97, SHELXL97, Programs for Crystal Structure Analysis, Institüt für Anorganische Chemie der Universität, Tammanstrasse 4, D-3400 Göttingen, Germany, 1998.
27. Farrugia, L. J. J. Appl. Cryst., 1999, 32, 837-838.
28. Kaftori, M.; Kapon, M.; Botoshansky, M. The Structural Chemistry of Organosilicon Compounds in The Chemistry of Organosilicon Compounds Vol. 2. Edited by Z. Rappoport and Y. Apeilog. Wiley, New York, 1998 p. 181.
29. Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry. Principles of Structure and Reactivity, 4th ed., Harper Collins College Publishers, N ew York, 1993, p. 292, A-30.
30. Bickelhaupt, F. M.; van Eikema Hommes, N. J. R.; Fonseca Guerra, C.; Baerends, E. J. Organometallics 1996, 15, 2923.
31. a) Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049-4050; b) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793-1873; c) Chermette, H. J. Comp. Chem. 1999, 20, 129-154.
32. Kocher, N.; Henn, J.; Gostevskii, B.; Kost, D.; Kalikhman, I.; Engels, B.; Stalke, D. J. Am. Chem. Soc. 2004, 126, 5563-5568.

Downloads

Published

2020-08-05

Issue

Section

Regular Articles

Most read articles by the same author(s)