Adsorption of Phenol and Dichlorophenols from Aqueous Solutions by Porous Clay Heterostructure (PCH)

Authors

  • Sofía Arellano-Cárdenas Instituto Politécnico Nacional
  • Tzayhrí Gallardo-Velázquez Instituto Politécnico Nacional
  • Guillermo Osorio-Revilla Instituto Politécnico Nacional
  • Ma. del Socorro López-Cortéz Instituto Politécnico Nacional
  • Brenda Gómez-Perea Instituto Politécnico Nacional

Keywords:

Clay, PCH, phenol adsorption, dichlorophenols adsorption

Abstract

Abstract. Experiments have been conducted to examine the adsorption of phenol and dichlorophenols (2,5 DCP and 3,4 DCP) from water by a Porous Clay Heterostructure (PCH). Experiments were carried out for the analysis of adsorption equilibrium capacities using a batch equilibrium technique. The Freundlich adsorption model was best to describe adsorption equilibrium data for dichorophenols (r2 = 0.994 for 3,4 DCP and r2 = 0.993 for 2,5 DCP). In the case of the adsorption of phenol, the isotherm model of Langmuir was best to describe the experimental data (r2 = 0.9839) at high equilibrium concentrations (0-500 ppm), while at low equilibrium concentrations (0-20 ppm) the Freundlich model was best to describe the data (r2 =0.9831). This deviation implies that the adsorption sites are heterogeneous. The adsorption capacity showed by the PCH for both phenol and DCPs from water (48.7 mg/g for 3,4-DCP, 45.5 mg/g for 2,5- DCP and 14.5 mg/g for phenol), suggests that the PCH have both, hydrophobic and hydrophilic characteristics, due to the presence of silanol and siloxane groups formed during the pillaring and preparation of the PCH.

 

Resumen. Se llevaron a cabo experimentos para estudiar la capacidad de adsorción de una Arcilla Porosa de Estructura Heterogénea para fenol y diclorofenoles (2,5 DCF y 3,4 DCF) en medio acuoso. Los experimentos de adsorción se realizaron por medio de una técnica por lotes para la determinación de las concentraciones en el equilibrio del adsorbato en solución. Las isotermas de adsorción para los diclorofenoles se ajustaron al modelo de la isoterma de Freundlich, obteniéndose un coeficiente de determinación de r2 = 0.994 para el 3,4 DCF y r2 = 0.993 para el 2,5 DCF. Para el caso de la isoterma de adsorción de fenol, el modelo de adsorción de Langmuir fue el que mejor se ajustó (r2 = 0.9839) a concentraciones de equilibrio altas (0-500 ppm), sin embargo a concentraciones de equilibrio bajas (0-20 ppm), el modelo de Freundlich es el que mejor representa los datos (r2 = 0.9831) implicando que los sitios de adsorción son heterogeneos. La presencia de capacidad de adsorción de la PCH tanto para fenol como para DCFs (48.7 mg/g para el 3,4-DCP, 45.5 mg/g para el 2,5-DCP y 14.5 mg/g para el phenol), sugiere la presencia de grupos siloxano y silanol en la PCH, los cuales fueron desarrollados durante la preparación y calcinación de ésta, confiriéndole así un carácter tanto hidrofílico como hidrofóbico a la superficie del adsorbente.

Downloads

Download data is not yet available.

Author Biographies

Sofía Arellano-Cárdenas, Instituto Politécnico Nacional

Escuela Nacional de Ciencias Biológicas

Tzayhrí Gallardo-Velázquez, Instituto Politécnico Nacional

Escuela Nacional de Ciencias Biológicas

Guillermo Osorio-Revilla, Instituto Politécnico Nacional

Departamento de Ingeniería Bioquímica. Escuela Nacional de Ciencias Biológicas

Ma. del Socorro López-Cortéz, Instituto Politécnico Nacional

Escuela Nacional de Ciencias Biológicas

Brenda Gómez-Perea, Instituto Politécnico Nacional

Escuela Nacional de Ciencias Biológicas

References

1. Cooney, D. O. Adsorption Design for Wastewater Treatment. Lewis Publishers, Washington D.C., 1998.
2. Theopharis, G. D.; Triantafyllos, A. A.; Dimitrios, E. P.; Philip, J. P. Wat. Res. 1998, 32, 295-302.
3. Matthes, W.; Kahr, G. Clays and Clay Minerals. 2000, 48, 593-602.
4. Yapar, S.; Klahre, P.; Klumpp, E. Turkish J. Eng. Env. Sci. 2004, 28, 41-48.
5. Crosby D. G. in: IUPAC Reports on Pesticides, Vol. 14, Davis, CA, 2001, 1051-1080.
6. Duarte-Davidson, R.; Troisi, G.; Capleton, A. A Screening Method for ranking Chemicals by their Fate and Behaviour in the Environment and Potential Toxic Effects in Human Following Non-occupational Exposure. MRC Institute for Environment and Health, Leicester, UK., 2004.
7. Johnston, C. T. in: Organic Pollutants in the Environment, Vol. 8, Sawhney, B. L., Ed., Clay Mineral Society, Colorado, 1996, 2-36.
8. Juang, R.S.; Wu, F.C.; Tseng, R. L. J. Chem. Eng. Data 1996, 41, 487-492.
9. Ozbelge, T. A.; Ozbelge, H. O.; Baskaya, S. Z., Chem. Eng. Proc., 2002, 41, 719-730.
10. Dullien, F A. L. Porous Media. Academic Press. N.Y. 1992.
11. Roquerol, F.; Roquerol, J.; Sing, K. Adsorption by Powders and Porous Solids. Academic Press. N.Y. 1999.
12. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, T-W.; Olson, D. H.; Sheppard, E. W.; Mc Cullen, S. B.; Higgins, J. B.; Schlenker, J. L., J. Am. Chem. Soc. 1992, 114, 10834-10843.
13. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature, 1994, 359, 710.
14. Pinnavaia, T. J. US patent 1998. (US 5834391)
15. Galarneau, A.; Barodawalla, A.; Pinnavaia, T. J. Nature 1995, 374, 529-531
16. Polvorojean, M.; Liu, Y.; Pinnavaia, T. J. Chem. Mater. 2002, 14, 2283-2290.
17. Pichowicz, M.; Mokaya, R. Chem. Commun. 2001, 2100-2101.
18. Wei, L.; Tang, T.; Huang, B. Micropor. Mesopor. Mats. 2004, 175-179.
19. Dyer, A.; Gallardo, V. T.; Roberts, C. W. in Zeolites: Facts, Figures, Future. 49ª Jacobs, P. A.; Van Santen, R. A., Ed., Elsevier Applied Science, London. 1989, 389-398.
20. Dyer, A.; Gallardo, V. T. in: Recent Developments in Ion Exchange. Williams, P.A.; Hudson, M.J., Ed., Elsevier Applied Science, London. 1990, 75-84.
21. Danis, T. G.; Albanis, T. A.; Petrakis, D. E.; Pomonis, P. J. Wat. Res. 1998, 32, 295-302.
22. Cooper, C.; Burch, R. Wat. Res. 1999, 33, 3689-3694.
23. Konstantinuo, I. K.; Albanis, T. A.; Petrakis, D. E.; Pomonis, P. J. Wat. Res. 2000, 34, 3123-3136.
24. Arellano, C. S.; Gallardo, V. T.; López, C. S.; Osorio, R. G. Rev. Soc. Quím. Mex. 2002, 46, 120-124.
25. Stamberg, K.; Venkatesan, K. A.; Rao, V. P. R. Colloid Surface A 2003, 221, 149-162.
26. Osorio, R. G.; Gallardo, V. T.; Solano, R. G.; López, C. S.; Arellano, C. S. Rev. Soc. Quím. Mex. 2004, 48, 151-155.
27. Gallardo, V. T.; Arellano, C. S.; Torres, U. P.; López, C. S.; Osorio, R. G. Rev. Soc. Quím. Mex. 2003, 47, 240-244.
28. Tahani, A.; Karroua, M.; El Farissi, M.; Levitz, P.; van Damme, H.; Bergaya, F.; Margulies, L. J. Chem. Phys. 1999, 96, 464-469.
29. Srinivasan, K. R.; Fogler, H. S. Clay. Clay. Miner. 1990, 38, 277-286.
30. Roostaei, N.; Tezel, F. H. J. Environ. Manage. 2004, 70, 157-164.
31. Zhao, X. S.; Lu, G. Q.; Millar, G. J.; Whittaker, A. K.; Zhu, H. Y. J. Phys. Chem. B. 1997, 101, 6225-6531.
32. Giles, C. H.; Mac Ewan, T. H.; Nakwa S. N.; Smith, D. J. Chem. Soc. 1960, 3, 3973-3993.
33. Goyne, K. W.; Zimmerman, A. R.; Newalkar, B. L.; Komarneni, S.; Brantley, S. L.; Chorover, J. J. Porous Mat. 2002, 9, 243-256.
34. Giles, C. H.; Nakhwa, S. N. J. Appl. Chem. 1962, 12, 266-273
35. Yang, R. T. Adsorbents. Fundamentals and Applications. John Wiley & Sons, Inc., New Jersey. USA. 2003.

Downloads

Published

2020-07-31

Issue

Section

Regular Articles

Most read articles by the same author(s)