Electrochemical Advanced Oxidation Processes: An Overview of the Current Applications to Actual Industrial Effluents
DOI:
https://doi.org/10.29356/jmcs.v58i3.133Keywords:
Advanced oxidation processes, industrial wastewaters, surface processes, bulk processesAbstract
Many human activities result in the production of wastewater. Usually, physical, chemical and biological processes are successfully combined for the treatment of municipal wastewater, attaining good removal efficiencies. However, some industrial processes introduce anthropogenic recalcitrant pollutants in wastewater that are quite difficult to remove or degrade using conventional means and that should be removed due to their hazardousness. In such cases, the application of an Advanced Oxidation Processes (AOP) uses to be a good and/or promising alternative to attain an appropriate effluent. These processes rely on generating hydroxyl radical, which is a powerful oxidant that mineralizes efficiently pollutants contained in wastewater. In this review, we focus on the use of electrochemical methods to produce hydroxyl radical, using directly or indirectly electrochemical technology, within the so-called Advanced Electrochemical Oxidation Processes (EAOP). These processes include electrochemical, sonoelectrochemical and photoelectrochemical technologies and this work describes the fundamentals, main cases studied in the literature related to actual industrial waste treatment and tries to help in the elucidation of the range of applicability of each technology.
Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.