Effect of pH to the Decomposition of Aqueous Phenols Mixture by Ozone
DOI:
https://doi.org/10.29356/jmcs.v50i1.1299Keywords:
Ozonation, water, phenols, descomposition, pHAbstract
Abstract. The degradation of the mixture of phenol and its chlorinated derivatives with ozone is studied. The studied compounds are phenol (Ph), 4 – chlorophenol (4-CPh) and 2,4 – dichlorophenol (2,4-DCPh). The kinetic performances of each phenolic compound in the model mixture are examined. The pH influence to the decomposition dynamics for different phenolic compounds in the range 2 – 12 is investigated. The increase of the decomposition rate under the pH increasing was observed. In the studied pH range, phenol and chlorophenols ozonation proceeds rapidly. The UV absorvency is used for the preliminary control of the phenols decomposition degree. The HPLC analysis was used to identify intermediates and final products formed during ozonation of the phenols mixture. It is shown that the basic intermediates are muconic and fumaric acids, malonic and maleic acids, catechol and hydroquinone. The final products are oxalic acid and formic acid. In the case of alkaline media, the principal final product is oxalic acid. Furthermore, intermediates and final decomposition products obtained at the different pH are compared. According to the obtained results, the possible mechanism of ozonation by the reaction of hydroxylation and dechloration in the early stage is proposed. The BOD5/COD ratio is used as a biodegradability measure for the comparison of biodegradability of initial compounds and final products composition.
Resumen. Se estudió la degradación con ozono de la mezcla de fenol y sus derivados clorados. Los compuestos estudiados fueron fenol (Ph), 4-clorofenol (4-CPh) y 2,4-diclorofenol (2,4-DCPh). Se determinó el comportamiento cinético de cada compuesto fenólico en la mezcla modelo. Se investigó la influencia del pH en la dinámica de descomposición de los diferentes compuestos fenólicos en un intervalo de 2-12. Se observó el incremento en la velocidad de descomposición conforme aumentaba el pH. En el intervalo de pH’s estudiado, la ozonación del fenol y clorofenoles se realizó eficientemente. La absorbancia en UV de cada compuesto fue utilizada como método de control preliminar del grado de descomposición de cada compuesto fenólico. Se realizó el análisis usando cromatografía de líquidos (HPLC) para identificar los productos intermediarios y finales formados durante la ozonación de la mezcla de fenoles. Dicho análisis mostró que los compuestos intermediarios principales son: los ácidos mucónico, fumárico, malónico y maléico; al igual que ácido oxálico y fórmico. En el caso del medio básico, el producto final principal es ácido oxálico. Además, se realizó una comparación de la descomposición de los productos intermediarios y finales a diferentes pH’s. De acuerdo a los resultados obtenidos, se proponen las reacciones de hidroxilación y decloración como etapas iniciales del mecanismo de ozonación. La relación BOD5/COD es utilizada como una medida de la biodegradabilidad del sistema para comparar la biodegradabilidad de la mezcla inicial y la mezcla final una vez ozonada.
Downloads
References
2. Beltrán, F.J.; Encinar, J. M.; González, J. F. Water Res. 1997, 31, 2415-2428.
3. Boari, G.; Brunetti, A.; Passino, R.; Rozzi; A. Agr. Wastes 1984, 10, 161-175.
4. Hamid, M. Appl. Biochem. Biotech. 1991, 37, 155-163.
5. Calvosa, L.; Monteverdi, A.; Rindone, B.; Riva, G. Water Res. 1991, 25, 985-993.
6. Stowell, J.P.; Jensen, J.N.; Weber, A.S. Water Sci. Technol. 1992, 29, 2085-2087.
7. Jogleker, H.S.; Sament, S.D.; Joshi, J.B. Water Res. 1991, 25, 135-145.
8. Davis, A.P.; Huang, C.P. Water Res. 1990, 24, 543-550.
9. Adams, C.; Cozens, R.; Kim, B. Water Res. 1997, 31, 2655-2663.
10. Yordanov, R.; Melvin, M.; Law, S.; Little, John J.; Lamb, A. Ozone Sci. Eng. 1999, 21, 615-628.
11. Griffini, O.; Bao, M.; Bariere, K.; Burrini, D.; Santianni, D.; Pantani, F. Ozone Sci. Eng. 1999, 21, 79-98.
12. Poznyak, T.I. and Vivero, J.L. Ozone Sci. Eng, 2005, 27, 447-458.
13. Gilbert, E. Water Res. 1987, 29, 1273-1276.
14. Marco, A.; Esplugas, S.; Saum, G. Water Sci. Technol. 1997, 35, 321-327.
15. Yu, C.P.; Yu Y.H. Water Sci. Technol. 2000, 42, 435-440.
16. Chamarro, E.; Marco, A.; Espulgas, S. Water Res. 2001, 35, 1047-1051.
17. Araiza, B. G.; Poznyak, T. Proceedings of the IOA/PAG International Conference, September 18-20, 2002, Mexico City, Mexico.
18. Contras, S.; Rodríguez, M.; Saus, C.; Espulgas, S. Proceedings of the IOA-EA3G International Conference, March 10-12, 2004, Barcelona, Spain, pp. I.1.3-1-I.1.3-6.
19. Poznyak, T. Ozone Sci. Eng. 2003, 25, 145-153.
20. “Standard Test Method for Chemical Oxygen Demand in Water”, American Society for Testing Materials, USA, ASTM Committee on Standards, 1994, Philadelphia PA, vol. 11.02, pp 62-68.
21. “Biochemical Oxygen Demand (BOD)”, Standard Methods for Examination of Water and Wastewater, American Water Works Association (AWWA), Water Pollution Control Federation (WPCF), 19a Ed.
22. Jans, U.; Hoigne, J. Ozone Sci. Eng. 1998, 20, 67-89.
23. Beltrán F. J.; Rivas, J.; Alvarez, P.: Montero, R. Ozone Sci. Eng. 2002, 24, 227-237.
24. Valdés, H.; Sánchez, P. M.; Rivera, U. J.; Zaror, C. A. Langmuir 2002, 18, 2111-2116.
25. Razumovskii, S. D.; Zaikov, G. E. Ozone and its Reactions with Organic Compounds, Elsevier, Amsterdam-Oxford-New York-Tokyo, 1984.
26. Sang-Kuk, H.; Kazuhiro, I.; Utsumi, H. Water Res. 1998, 32, 3261- 3266.
27. Gurol, M.; Singer, P. Water Res. 1983, 17, 1173-1181.
28. Benoit, G. Fresenius Environ. Bull., 1994, 3, 331-338.
29. Poznyak, T.; Araiza G., B. Proceedings of the IOA Int. Ozone Conference, Advances in Ozone Science and Engineering: Environmental Processes and Technological Applications, April 15-16, 2002, Hong Kong, China, pp. 340-347.
30. Gould, J.P.; Weber, W.J. J. Water Pollut. Control Fed., 1976, 48, 47-60.
31. Trapido, M.; Hirvonen, A.; Veressinina, Y.; Hentunen, J. Ozone Sci. Eng, 1996, 18, 75-95.
32. Kuo, C.H.; Huang, C.H. J. Hazard. Mater. 1995, 41, 31-45.
33. Kuo, C.H.; Huang, C.H. Ozone Sci. Eng. 1998, 20, 163-197.
34. Hautaniemi, M.; Kalas, J.; Munter, R.; Trapido, M. Ozone Sci. Eng. 1998, 20, 259-282.
35. Poznyak, T.; Araiza G. B. Ozone Sci. Eng. 2005, 27, 351-357.
36. Gilbert, E. Proceedings of the 2nd Intern. Symp. on Ozone Technology, IOA, 1975, pp. 253-261.
37. Yu, Y.H.; Hu, S.T. Proceedings of the 11-th Ozone World Congress, San Francisco, CA, USA, 1993, 2: S-3-1-S-3-15.
38. Chen, J.N.; Ni., C.H. Proceedings of the 14-th Ozone World Congress, Dearborn, Michigan, USA, 1999, 2,163-177.
39. Hoigne, J.; Bader, H. Water Res. 1983, 17, 185-194.
40. Qiu, Yongqiang; Kuo, Chaing-Hai; Zappi, Proceedings of the 14th Ozone World Congress, Dearborn, Michigan, USA, 1999, 2, 105-117.
41. Lisitsin, D. M.; Poznyak, T. I.; Razumovskii, S. D. Kinet. Katalis, 1976, 17, 1049-1056 (Chem. Abstr. 1976, 85, 191917s).
42. Poznyak, T. I.; Lisitsyn, D. M.; Nokinov, D. D. J. Anal. Chem. 1977, 32, 2218-2226.
43. Poznyak, A. S.; Wen, Yu; Poznyak, T. I.; Najim, K. Int. J. Theor. Appl. Comp. Simul. 2004, 12, 195-221.
44. Poznyak, T. I.; Manzo, A. R.; Mayorga, J. L. Rev. Soc. Quím. Méx. 2003, 47; 58-65.
45. Chairez, I.; Poznyak, A.; Poznyak, T. Proceedings of the 8-th International Workshop on Variable Structure Systems, Vilanovai la Geltrú, Spain, 2004.
46. Poznyak, T.; Chairez I.; Poznyak A. Water Res. 2005, 39, 2611-2620.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.