Electrochemical Behaviour of 1018, 304 and 800 Alloys in Synthetic Wastewater

Authors

  • Raúl Sandoval-Jabalera Centro de Investigación en Materiales Avanzados
  • Guadalupe V. Nevárez-Moorillón Universidad Autónoma de Chihuahua
  • José G. Chacón-Nava Centro de Investigación en Materiales Avanzados
  • José M. Malo-Tamayo Instituto de Investigaciones Eléctricas
  • Alberto Martínez-Villafañe Centro de Investigación en Materiales Avanzados

DOI:

https://doi.org/10.29356/jmcs.v50i1.1297

Keywords:

Polarization resistance, cyclic polarization, electrochemical noise, steels, synthetic wastewater

Abstract

Abstract. Due to the fact that corrosion problems affecting the residual
water treatment industry are varied and scarcely studied, this
work presents an investigation of the corrosion behavior of important
materials of engineering such as steel AISI-1018, AISI-304, and
AISI-800 exposed to synthetic residual water under laboratory conditions.
The electrochemical techniques used to asses the electrochemical
behavior were linear polarization resistance (LPR), cyclic polarization
curves (CPC) and electrochemical noise (ECN) techniques to
determine corrosion rates, the susceptibility to localized corrosion
and the most likely corrosion mechanism, respectively. In order to
ascertain the amount of aerobic and anaerobic bacteria present on the
steel surface, the Most Probable Number method (MPN) was
employed. On the whole, the steels studied showed a better corrosion
resistance in the following order: 800 > 304 > 1018. Also, the experimental
results indicated that none of the steels demonstrated susceptibility
to localized corrosion.
Key Words: , ,
, .
Resumen. Debido a que los problemas de corrosión que afectan la
industria de tratamiento de aguas residuales son variados y escasamente
estudiados, se presenta un estudio del comportamiento de corrosión
de los aceros AISI-1018, AISI-304 y AISI-800 expuestos en
agua residual sintética para conocer su comportamiento bajo condiciones
de laboratorio.
Las técnicas electroquímicas empleadas para determinar el comportamiento
de la corrosión fueron resistencia a la polarización lineal
(RPL), curvas de polarización cíclica (CPC) y ruido electroquímico
(REQ), para determinar velocidades de corrosión, susceptibilidad a
corrosión localizada y el mecanismo más probable de corrosión,
respectivamente. El método de número más probable (NMP) fue
empleado para contar los microorganismos presentes en la superficie
de los aceros. En general, los aceros estudiados presentaron una
mejor resistencia a la corrosión en el orden siguiente: 800>304>1018.
También, se determinó que los aceros no fueron susceptibles a la corrosión
localizada durante el proceso de experimentación.

Downloads

Download data is not yet available.

Author Biography

Guadalupe V. Nevárez-Moorillón, Universidad Autónoma de Chihuahua

Facultad de Ciencias Químicas

References

1. Porter, P.C.; Quick, E. Mater. Performance 2001, 40, 42-45.
2. Tator, K. B. Mater. Performance 2003, 42, 32-37.
3. Gebler, S. H.; Detwiler, R. J. Mater. Performance 2002, 41, 32-36.
4. Korshin, G. V., Ferguson, J. F.; Lancaster, A. N. Corr. Sci. 2000, 42, 53.
5. Iversen, A. Paper No. 2451, Corrosion 2002, NACE, Denver, Colorado. 2002.
6. Tuthill, A. H. Guidelines for the Use of Stainless Steel in Municipal Waste Water Treatment Plants, NITS 10076, www.nidi.org/index.cfm/ci_id/10627.htm
7. Duplex steel reduces maintenance cost for sewage system, www.corrosionsource.com/news/01AugNews.htm#duplex
8. Schweitzer, P.A. “Corrosion of Nickel and High-Nickel Alloys” in: Corrosion Engineering Handbook, 1996, Marcel Dekker, Inc. USA.
9. Nagiub, A.; Mansfeld, F. Mater. Corros. 2001, 52, 817.
10. Siebert, O.W., in: Electrochemical Techniques for Corrosion Engineering, Ed. by Baboian, R. NACE, Houston, 1986, 81-92.
11. Tan, Y.J.; Bailey, S.; Kinsella, B. Corr. Sci. 1996, 38, 1681.
12. Rothwell, A.N.; Eden, D. A. Paper No. 223, Corrosion 92, NACE, Houston, TX. 1992.
13. Webster, S.; Nathanson, L.; Green, A.G.; Johnson, B.V. The Use of Electrochemical Noise to Assess Inhibitor Film Stability, Corrosion 92, UK, 1992.
14. Mickalonis, J.; Jacko, R. J.; Quirk, G. P.; Eden, D. A., ASTM STP 1277, American Society for Testing and Materials, 1996, 210-213.
15. Fontana M. G. Corrosion Engineering, 3rd Ed. McGraw-Hill Int, 1987, 172
16. Stearn M.; Geary, A.L. J. Electrochem. Soc. 1958, 105, 638.
17. ASTM Standard G61-86, Standard Practice for Conducting Cyclic Potentiodynamic Polarization Measurements for Localized Corrosion, ASTM. 1998.
18. ASTM STP 1277, Electrochemical Noise Measurements for Corrosion Applications, ASTM, 1996.

Published

2020-07-24

Issue

Section

Regular Articles