New Captodative Olefins: 3-(2-Furoyloxy)-3-buten-2-one and Alkyl 2-(2-Furoyloxy)-2-propenoates, and their Reactivity in Addition Reactions

Authors

  • Blanca M. Santoyo Instituto Politécnico Nacional
  • Rafael Herrera Universidad Michoacana de San Nicolás de Hidalgo
  • Raúl Aguilar Instituto Politécnico Nacional
  • Aydeé Fuentes-Benites Instituto Politécnico Nacional
  • Fabiola Jiménez Instituto Politécnico Nacional
  • Joaquín Tamariz Instituto Politécnico Nacional

DOI:

https://doi.org/10.29356/jmcs.v51i4.1282

Keywords:

Captodative olefins, 2-furoyloxy group, Diels-Alder, Friedel-Crafts, FMO

Abstract

Abstract. A new series de captodative olefins 3-(2-furoyloxy)-3-buten-2-one and alkyl 2-(2-furoyloxy)-2-propenoates, 3a-3c, has been prepared with the aim of evaluating the effect of a heterocycle in the electron-donating moiety on the reactivity of these compounds in Diels-Alder and conjugate additions. In the former reactions, their behavior has been evaluated by reacting under thermal and catalyzed conditions with cyclopentadiene (9) and cyclohexadiene (12) as the dienes, showing a comparable reactivity, but a lower stereoselectivity, with respect to the reference captodative olefins 1a and 2a. In the case of conjugate additions, the Friedel-Crafts reaction of the highly activated benzene ring of 1,2,4-trimethoxybenzene (7) led to the corresponding adduct 8 only for olefin 3a. Ab initio calculations (HF/6-31G*) of the energies and coefficients of the FMOs were carried out to explain the experimental reactivity in both processes. The results suggest that both the electron-withdrawing and the 2-furoyloxy groups are involved in controlling the reactivity and selectivity of olefins 3.

 

Resumen. Se describe la preparación de una nueva serie de olefinas captodativas 3-(2-furoiloxi)-3-buten-2-ona y 2-(2-furoiloxi)-2-propenoatos de alquilo, 3a3c, con el fin de evaluar el efecto del heterociclo en la parte electro-donadora de la olefina sobre su reactividad en reacciones de Diels-Alder y de adiciones conjugadas. En el primer caso, se evaluó su comportamiento bajo condiciones térmicas y catalizadas empleando ciclopentadieno (9) y ciclohexadieno (12) como los dienos, encontrándose una reactividad comparable, aunque menor estereoselectividad, con respecto a las olefinas captodativas de referencia 1a and 2a. Para el caso de la adición conjugada, la reacción de Friedel-Crafts del compuesto 1,2,4-trimetoxibenceno (7), el cual posee un anillo bencénico muy activado, condujo solamente al aducto correspondiente, 8, de la olefina 3a. Se llevaron a cabo cálculos ab initio (HF/6-31G*) de energías y coeficientes de los FMOs para explicar la reactividad experimental en ambos procesos. Estos resultados sugieren que la reactividad y selectividad de las olefinas 3 están controladas tanto por el grupo electroatractor como por el grupo 2-furoiloxi.

Downloads

Download data is not yet available.

Author Biographies

Blanca M. Santoyo, Instituto Politécnico Nacional

Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas

Rafael Herrera, Universidad Michoacana de San Nicolás de Hidalgo

Instituto de Investigaciones Quimicobiológicas

Raúl Aguilar, Instituto Politécnico Nacional

Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas

Aydeé Fuentes-Benites, Instituto Politécnico Nacional

Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas

Departamento de Química Orgánica, Facultad de Química, Universidad Autónoma del Estado de México

Fabiola Jiménez, Instituto Politécnico Nacional

Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas

Joaquín Tamariz, Instituto Politécnico Nacional

Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas

References

1. (a) Viehe, H. G.; Janousek, Z.; Merényi, R.; Stella, L. Acc. Chem. Res. 1985, 18, 148-154. (b) Boucher, J.-L.; Stella, L. Tetrahedron 1986, 42, 3871-3885. (c) Döpp, D.; Libera, H. Tetrahedron Lett. 1983, 24, 885-888. (d) Rulev, A. Y. Russ. Chem. Rev. 2002, 71, 195-221. (e) Seneci, P.; Leger, I.; Souchet, M.; Nadler, G. Tetrahedron 1997, 53, 17097-17114. (f) Ferreira, P. M. T.; Maia, H. L. S.; Monteiro, L. S. Tetrahedron Lett. 2002, 43, 4491-4493. (g) Memarian, H. R.; Dehghani, M.; Henkel, G.; Döpp, D. Monatsh. Chem. 2004, 135, 425-433. (h) Avenoza, A.; Busto, J. H.; Canal, N.; Peregrina, J. M.; Pérez-Fernández, M. Org. Lett. 2005, 7, 3597-3600. (i) Bonauer, C.; Walenzyk, T.; König, B. Synthesis 2006, 1-20. (j) Lasa, M.; Cativiela, C. Synlett 2006, 2517-2533. (k) Sakakura, A.; Suzuki, K.; Ishihara, K. Adv. Synth. Catal. 2006, 348, 2457-2465.
2. (a) Sustmann, R. Tetrahedron Lett. 1971, 2721–2724. (b) Houk, K. N.; Sims, J.; Watts, C. R.; Luskus, L. J. J. Am. Chem. Soc. 1973, 95, 7301–7315.
3. (a) Reyes, A.; Aguilar, R.; Muñoz, A. H.; Zwick, J.–C.; Rubio, M.; Escobar, J.-L.; Soriano, M.; Toscano, R.; Tamariz, J. J. Org. Chem. 1990, 55, 1024–1034. (b) Aguilar, R.; Reyes, A.; Tamariz, J.; Birbaum, J.-L. Tetrahedron Lett. 1987, 28, 865–868. (c) García de Alba, O.; Chanona, J.; Delgado, F.; Zepeda, G.; Labarrios, F.; Bates, R. W.; Bott, S.; Juaristi, E.; Tamariz, J. Anal. Quím. Int. Ed. 1996, 92, 108–117.
4. (a) Nagarajan, A.; Zepeda, G.; Tamariz, J. Tetrahedron Lett. 1996, 37, 6835–6838. (b) Jiménez, R.; Pérez, L.; Tamariz, J.; Salgado, H. Heterocycles 1993, 35, 591–598. (c) Herrera, R.; Nagarajan, A.; Morales, M. A.; Méndez, F.; Jiménez-Vázquez, H. A.; Zepeda, L. G.; Tamariz, J. J. Org. Chem. 2001, 66, 1252–1263.
5. Aguilar, R.; Benavides, A.; Tamariz, J. Synth. Commun. 2004, 34, 2719–2735.
6. (a) Andrade, R. M.; Muñoz, A. H.; Tamariz, J. Synth. Commun. 1992, 22, 1603–1609. (b) Orduña, A.; Zepeda, G.; Tamariz, J. Synthesis 1993, 375–377. (c) Dienes, Z.; Vogel, P. J. Org. Chem. 1996, 61, 6958–6970. (d) Ochoa, M. E.; Arias, A. S.; Aguilar, R.; Delgado, F.; Tamariz, J. Tetrahedron 1999, 55, 14535–14546. (e) Aguilar, R.; Reyes, A.; Orduña, A.; Zepeda, G.; Bates, R. W.; Tamariz, J. Rev. Soc. Quím. Méx. 2000, 44, 91–96.
7. Herrera, R.; Jiménez-Vázquez, H. A.; Modelli, A.; Jones, D.; Söderberg, B. C.; Tamariz, J. Eur. J. Org. Chem. 2001, 4657–4669.
8. Jiménez-Vázquez, H. A.; Ochoa, M. E.; Zepeda, G.; Modelli, A.; Jones, D.; Mendoza, J. A.; Tamariz, J. J. Phys. Chem. A 1997, 101, 10082–10089.
9. Mendoza, J. A.; García-Pérez, E.; Jiménez-Vázquez, H. A.; Tamariz, J. J. Mex. Chem. Soc. 2006, 50, 47-56.
10. Tamariz, J.; Vogel, P. Helv. Chim. Acta 1981, 64, 188–197.
11. Herrera, R.; Jiménez-Vázquez, H. A.; Delgado, F.; Söderberg, B. C. G.; Tamariz, J. J. Braz. Chem. Soc. 2005, 16, 456-466.
12. Peralta, J.; Bullock, J. P.; Bates, R. W.; Bott, S.; Zepeda, G.; Tamariz, J. Tetrahedron 1995, 51, 3979–3996.
13. The authors have deposited the atomic coordinates for this structure with the Cambridge Crystallographic Data Centre (CCDC657331). The coordinates can be obtained, on request, from the Director Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK.
14. (a) Kong, S.; Evanseck, J. D. J. Am. Chem. Soc. 2000, 122, 10418-10427, and references cited therein. (b) Zhao, H.; Malhotra, S. V. Aldrichimica Acta 2002, 35, 75-83. (c) Grieco, P. A. Aldrichimica Acta 1991, 24, 59-66. (e) Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772-3789. (f) Breslow, R.; Maitra, U. Tetrahedron Lett. 1984, 25, 1239-1240. (g) Welton, T. Chem. Rev. 1999, 99, 2071-2083. (h) Breslow, R. Acc. Chem. Res. 2004, 37, 471-478, and references cited therein.
15. (a) Sauer, J.; Sustmann, R. Angew. Chem. Int. Ed. Engl. 1980, 19, 779-807. (b) Fringuelli, F.; Taticchi, A. Dienes in the Diels-Alder Reaction, Wiley: New York, 1990.
16. Santoyo, B. M., Ph.D. Thesis, Escuela Nacional de Ciencias Biológicas, IPN, in preparation.
17. (a) Fleming, I. Frontier Orbitals and Organic Chemical Reactions. John Wiley & Sons, Chichester, 1976. (b) Houk, K. N. Acc. Chem. Res. 1975, 8, 361–369. (c) Eisenstein, O.; Lefour, J. M.; Anh, N. T.; Hudson, R. F. Tetrahedron 1977, 33, 523–531. (d) Spíno, C.; Pesant, M.; Dory, Y. Angew. Chem. Int. Ed. 1998, 37, 3262–3265. (e) Rauk, A. Orbital Interaction Theory of Organic Chemistry. John Wiley & Sons, New York, 2001.
18. Herrera, R., Ph.D. Thesis. Escuela Nacional de Ciencias Biológicas, IPN, 2002.
19. SHELX-97, Sheldrick, G., Institut Anorg. Chemie, Tammannstr. 4, D37077 Göttingen, Germany, 1997.
20. Speck, A. L. J. Appl. Cryst. 2003, 36, 7–13.
21. Gaussian 94, Revision E.2: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andrés, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J.P.; Head-Gordon, M.; González, C.; Pople, J. A. Gaussian, Inc., Pittsburgh, PA, 1995.

Downloads

Published

2020-07-24

Most read articles by the same author(s)