Synthesis of Pt-Ni/CNT Cathodic Catalyst and its Application in a PEM fuel Cell
DOI:
https://doi.org/10.29356/jmcs.v65i1.1268Keywords:
Pt-Ni, PEMFC, potential cyclesAbstract
Abstract. This work reports the synthesis, characterization, and catalytic activity of Pt-Ni/CNT with a low platinum load to use as cathode electrocatalyst in PEMFC (proton-exchange membrane fuel cells). The synthesis of nickel particles on the carbon nanotubes surface was carried out by chemical reduction of a Ni(ethylenediamine) complex; after that, the galvanic displacement reaction was performed to platinum deposition onto Ni/CNT. The Pt-Ni/CNT was deposited by spray technique on a gas diffuser layer (GDL) and subsequently subjected to several potential cycles to promote Ni atoms migration. Finally, its catalytic activity was evaluated in a fuel cell.
Resumen. En este trabajo, se reporta la síntesis, caracterización y evaluación catalítica del electrocatalizador Pt-Ni/CNT con bajo contenido de platino, empleado como electrocatalizador catódico en una celda de combustible tipo PEMFC (Celda de combustible de membrana de intercambio protónico). La síntesis de las partículas de níquel sobre la superficie de los nanotubos de carbono se llevó a cabo mediante la reducción química del complejo de Ni(etilendiamina) y posteriormente, se depositó platino sobre el material Ni/CNT mediante la reacción de desplazamiento galvánico. Se depositó una película de Pt-Ni/CNT sobre un difusor de gas mediante la técnica de esprayado y posteriormente fue sometido a diversos ciclos de potencial para promover la migración de los átomos de níquel y evaluar su actividad catalítica en una celda de combustible.
Downloads
References
Meyer, Q.; Zeng, Y.; Zhao, C. Adv. Mater. 2019, 31 (40), 1901900 DOI: https://doi.org/10.1002/adma.201901900
Wang, L.; Wan, X.; Liu, S.; Xu, L. Shui, J. J. Energy Chem. 2019, 39, 77-87 DOI: https://doi.org/10.1016/j.jechem.2018.12.019
Singh, K.; Tetteh, E. B.; Lee, H.-Y.; Kang, T.-H.; Yu, J.-S. ACS Catal. 2019, 9 (9), 8622-8645 DOI: https://doi.org/10.1021/acscatal.9b01420
Safo, I. A.; Dosche, C.; Özaslan, M. Chemphyschem. 2019, 20 (22), 3010-3023 DOI: https://doi.org/10.1002/cphc.201900653
Beermann, V.; Holtz, M. E.; Padgett, E.; de Araujo, J. F.; Muller, D. A.; Strasser, P. Energy Environ. Sci. 2019, 12 (8), 2476-2485 DOI: https://doi.org/10.1039/C9EE01185D
Yang, H.; Ko, Y.; Lee, W.; Züttel, A.; Kim, W. Mater. Today Energy 2019, 13, 374-381 DOI: https://doi.org/10.1016/j.mtener.2019.06.007
Da?, E.; Alkan Gürsel, S.; Bayrakçeken Yurtcan, A. J. Supercrit. Fluids 2020, 165, 104962 DOI: https://doi.org/10.1016/j.supflu.2020.104962
Sudirman, S.; Adi, W.; Budianto, E.; Khaerudini, D.; Yudianti, R. Int. J. of Chem. 2019, 12, 37 DOI: https://doi.org/10.5539/ijc.v12n1p37
Liu, Z.; Abdelhafiz, A. A.; Jiang, Y.; Qu, C.; Chang, I.; Zeng, J.; Liao, S.; Alamgir, F. M. Mater. Chem. Phys. 2019, 225, 371-378 DOI: https://doi.org/10.1016/j.matchemphys.2018.12.100
Da?, E.; Kaplan, B. Y.; Gürsel, S. A.; Yurtcan, A. B. Renew. Energy 2019, 139, 1099-1110 DOI: https://doi.org/10.1016/j.renene.2019.02.137
Guzman, C.; Verde, Y.; Bustos, E.; Manriquez, F.; Terol, I.; Arriaga, L. G.; Orozco, G. ECS Trans. 2019, 20 (1), 413-423 DOI: https://doi.org/10.1149/1.3268409
Bharti, A.; Cheruvally, G. J. Power Sources 2017, 360, 196-205 DOI: https://doi.org/10.1016/j.jpowsour.2017.05.117
Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, J. A.; Mavrikakis, M.; Chi, M.; More, K. L.; Li, Y.; Markovic, N. M.; Somorjai, G. A.; Yang, P.; Stamenkovic, V. R. Sci. 2014, 343 (6177), 1339-1343 DOI: https://doi.org/10.1126/science.1249061
Wang, Z.; Yao, X.; Kang, Y.; Miao, L.; Xia, D.; Gan, L. Adv. Funct. Mater. 2019, 29 (35), 1902987 DOI: https://doi.org/10.1002/adfm.201902987
Singh, K.; Tetteh, E. B.; Lee, H.-Y.; Kang, T.-H.; Yu, J.-S. ACS Catal. 2019, 9 (9), 8622-8645 DOI: https://doi.org/10.1021/acscatal.9b01420
Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Nano Lett. 2012, 12 (10), 5423-5430 DOI: https://doi.org/10.1021/nl302995z
Becknell, N.; Kang, Y.; Chen, C.; Resasco, J.; Kornienko, N.; Guo, J.; Markovic, N. M.; Somorjai, G. A.; Stamenkovic, V. R.; Yang, P. J. Am. Chem. Soc. 2015, 137 (50), 15817-15824 DOI: https://doi.org/10.1021/jacs.5b09639
Ghosh Chaudhuri, R.; Paria, S. Chem. Rev. 2012, 112 (4), 2373-2433 DOI: https://doi.org/10.1021/cr100449n
Alia, S. M.; Yan, Y. S.; Pivovar, B. S. Catal. Sci. Technol. 2014, 4 (10), 3589-3600 DOI: https://doi.org/10.1039/C4CY00736K
Ercolano, G.; Farina, F.; Stievano, L.; Jones, D. J.; Rozière, J.; Cavaliere, S. Catal. Sci. Technol. 2019, 9 (24), 6920-6928 DOI: https://doi.org/10.1039/C9CY01514K
Kang, Y. S.; Jung, J. Y.; Choi, D.; Sohn, Y.; Lee, S.-H.; Lee, K.-S.; Kim, N. D.; Kim, P.; Yoo, S. J. ACS Appl. Mater. Interfaces 2020, 12 (14), 16286-16297 DOI: https://doi.org/10.1021/acsami.9b22615
Oezaslan, M.; Hasché, F.; Strasser, P. J. Phys. Chem. Lett. 2013, 4 (19), 3273-3291 DOI: https://doi.org/10.1021/jz4014135
Tian, X.; Zhao, X.; Su, Y.-Q.; Wang, L.; Wang, H.; Dang, D.; Chi, B.; Liu, H.; Hensen, E. J. M.; Lou, X. W.; Xia, B. Y. Science 2019, 366 (6467), 850-856 DOI: https://doi.org/10.1126/science.aaw7493
Pavliši?, A.; Jovanovi?, P.; Šelih, V. S.; Šala, M.; Bele, M.; Draži?, G.; Ar?on, I.; Ho?evar, S.; Kokalj, A.; Hodnik, N.; Gaberš?ek, M. ACS Catal. 2016, 6 (8), 5530-5534 DOI: https://doi.org/10.1021/acscatal.6b00557
Ho, F. F. L.; Reilley, C. N. Anal. Chem. 1969, 41 (13), 1835-1841 DOI: https://doi.org/10.1021/ac60282a008
De Stefano, C.; Foti, C.; Sammartano, S. J. Chem. Eng. Data 1999, 44 (4), 744-749 DOI: https://doi.org/10.1021/je980319n
Yang, Y.; Li, S.; Xie, C.; Liu, H.; Wang, Y.; Mei, Q.; Liu, H.; Han, B. Chin. Chem. Lett. 2019, 30 (1), 203-206 DOI: https://doi.org/10.1016/j.cclet.2018.04.006
Zhang, L.; Chu, X.; Yuan, S.-m.; Zhao, G.-c. RSC Adv. 2015, 5 (52), 41317-41323 DOI: https://doi.org/10.1039/C5RA03306C
Watkins, C. L.; Vigee, G. S. J. Phys. Chem. A 1976, 80 (1), 83-88 DOI: https://doi.org/ 10.1021/j100542a018
Tsierkezos, N.; Schröder, D.; Schwarz, H. Int. J. Mass Spectrom 2004, 235, 33-42 DOI: https://doi.org/10.1016/j.ijms.2004.03.005
Reyes-Cruzaley, A. P.; Félix-Navarro, R. M.; Trujillo-Navarrete, B.; Silva-Carrillo, C.; Zapata-Fernández, J. R.; Romo-Herrera, J. M.; Contreras, O. E.; Reynoso-Soto, E. A. Electrochim. Acta 2019, 296, 575-581 DOI: https://doi.org/10.1016/j.electacta.2018.11.023
Osorio, A. G.; Silveira, I. C. L.; Bueno, V. L.; Bergmann, C. P. Appl. Surf. Sci. 2008, 255 (5, Part 1), 2485-2489 DOI: https://doi.org/10.1016/j.apsusc.2008.07.144
Rodriguez, J. R.; Félix, R. M.; Reynoso, E. A.; Gochi-Ponce, Y.; Gómez, Y. V.; Moyado, S. F.; Alonso-Núñez, G. J. Energy Chem. 2014, 23 (4), 483-490 DOI: https://doi.org/10.1016/S2095-4956(14)60175-3
Baldizzone, C.; Gan, L.; Hodnik, N.; Keeley, G. P.; Kostka, A.; Heggen, M.; Strasser, P.; Mayrhofer, K. J. J. ACS Catal. 2015, 5 (9), 5000-5007 DOI: https://doi.org/10.1021/acscatal.5b01151
Glüsen, A.; Dionigi, F.; Paciok, P.; Heggen, M.; Müller, M.; Gan, L.; Strasser, P.; Dunin-Borkowski, R. E.; Stolten, D. ACS Catal. 2019, 9 (5), 3764-3772 DOI: https://doi.org/10.1021/acscatal.8b04883
Erlebacher, J. Phys. Rev. Lett. 2011, 106 (22), 225504 DOI: https://doi.org/10.1103/PhysRevLett.106.225504
Wang, D.; Zhao, P.; Li, Y. Sci. rep. 2011, 1, 37 DOI: https://doi.org/10.1038/srep00037
Rudi, S.; Gan, L.; Cui, C.; Gliech, M.; Strasser, P. J. Electrochem. Soc. 2015, 162 (4), F403-F409 DOI: https://doi.org/10.1149/2.0621504jes
Tuaev, X.; Rudi, S.; Petkov, V.; Hoell, A.; Strasser, P. ACS Nano 2013, 7 (7), 5666-5674 DOI: https://doi.org/10.1021/nn402406k
Lin, R.; Che, L.; Shen, D.; Cai, X. Electrochim. Acta 2020, 330, 135251 DOI: https://doi.org/10.1016/j.electacta.2019.135251
Rudi, S.; Cui, C.-H.; Gan, L.; Strasser, P. Electrocatalysis 2014, 5, 408-418 DOI: https://doi.org/10.1007/s12678-014-0205-2
Urchaga, P.; Baranton, S.; Coutanceau, C. Electrochim. Acta 2013, 92, 438-445 DOI: https://doi.org/10.1016/j.electacta.2013.01.042
Takeshita, T.; Kamitaka, Y.; Shinozaki, K.; Kodama, K.; Morimoto, Y. J. Electroanal. Chem. 2020, 871, 114250 DOI: https://doi.org/10.1016/j.jelechem.2020.114250
Rudi, S.; Teschner, D.; Beermann, V.; Hetaba, W.; Gan, L.; Cui, C.; Gliech, M.; Schlögl, R.; Strasser, P. ACS Catal. 2017, 7 (9), 6376-6384 DOI: 10.1021/acscatal.7b00996
Vidakovi?, T.; Christov, M.; Sundmacher, K. Electrochim. Acta 2007, 52 (18), 5606-5613 DOI: https://doi.org/10.1016/j.electacta.2006.12.057
Becknell, N.; Son, Y.; Kim, D.; Li, D.; Yu, Y.; Niu, Z.; Lei, T.; Sneed, B. T.; More, K. L.; Markovic, N. M.; Stamenkovic, V. R.; Yang, P. J. Am. Chem. Soc. 2017, 139 (34), 11678-11681 DOI: https://doi.org/10.1021/jacs.7b05584
van der Vliet, D. F.; Wang, C.; Li, D.; Paulikas, A. P.; Greeley, J.; Rankin, R. B.; Strmcnik, D.; Tripkovic, D.; Markovic, N. M.; Stamenkovic, V. R. Angew. Chem. Int. Ed. 2012, 51 (13), 3139-3142 DOI: https://doi.org/10.1002/anie.201107668
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.