Pt-based Catalysts in the Dry Reforming of Methane: Effect of Support and Metal Precursor on the Catalytic Stability
DOI:
https://doi.org/10.29356/jmcs.v65i1.1262Keywords:
Methane dry reforming, Pt/Ceria, metal-support interaction, catalytic stabilityAbstract
Abstract. Platinum catalysts (1.5 wt. %) supported over CeO2 and γ-Al2O3 were synthesized via wet impregnation using two different Pt precursors: H2PtCl6 and Pt(acac)2. Catalysts were tested in the dry reforming of methane (DRM) reaction at stoichiometric conditions (CH4/CO2 molar ratio of 1) with two approaches: as a function of temperature (400-800 °C) and as a function of time on-stream (800 °C / 24 h). Platinum supported over ceria catalysts showed better catalytic properties, especially in the stability tests, where deactivation was almost negligible. In contrast, alumina-supported catalysts stability was considerably lower due to the increased formation of carbon residues and the significant Pt particle sintering after reaction at 800 °C for 24 h. Through different characterization techniques (TEM, CO chemisorption), a strong Pt-Ceria interaction was evidenced, which helped in preventing Pt particle agglomeration under reaction conditions and promoted active interface sites. Both features are proposed to be responsible for the Pt/CeO2 catalysts better catalytic performance. The effect of the Pt precursor depends on the nature of the support. In ceria, Cl species benefited the generation of oxygen vacancies and surface ceria reducibility; both features are responsible for the Pt/CeO2 anti-coke properties, thus impacting positively in the catalytic performance of the Pt(-cl)/Ce sample. Conversely, in alumina, these Cl species triggered particle sintering and carbon deposition during the DRM reaction, affecting the Pt(-cl)/Al catalytic performance.
Resumen. Catalizadores de platino (1.5 % en peso) soportados sobre CeO2 y γ-Al2O3 fueron sintetizados mediante impregnación húmeda utilizando dos diferentes precursores de Pt: H2PtCl6 and Pt(acac)2. Los catalizadores fueron evaluados en la reacción de reformado seco de metano (DRM) en condiciones estequiométricas (razón molar de CH4/CO2 igual a 1) y con dos metodologías: en función de la temperatura de reacción (400-800 °C) y en función del tiempo de reacción (800 °C / 24 h). Los catalizadores de platino soportados sobre ceria mostraron las mejores propiedades catalíticas, especialmente en las pruebas de estabilidad, donde la desactivación fue muy baja. Por el contrario, la estabilidad catalítica de las muestras soportadas en alúmina fue considerablemente menor, debido tanto a la formación de residuos de carbón como al sinterizado de partículas de Pt. Por medio diferentes técnicas de caracterización (TEM, Quimisorción de CO), se evidenció una fuerte interacción Pt-Ceria, la cual ayudó a prevenir la aglomeración de partículas de Pt durante la reacción, además de promover la generación de sitios activos interfaciales. Ambas características se proponen como las responsables de las mejores propiedades catalíticas presentadas por los catalizadores Pt/CeO2. El efecto del precursor del Pt depende de la naturaleza del soporte. En ceria, las especies de cloro beneficiaron la generación de sitios vacantes de oxígeno así como la reducción superficial de la ceria; ambas características son responsables de las propiedades anti-coque en el sistema Pt/CeO2, por lo tanto, estas impactaron positivamente en el desempeño catalítico de la muestra Pt(-cl)/Ce. Por el contrario, en la alúmina, estas especies cloradas aparentemente promovieron el sinterizado de partículas y los depósitos de carbono durante la reacción, lo cual afectó el desempeño catalítico de la muestra Pt(-cl)/Al.
Downloads
References
Cooper, S. A.; Raman, K. K.; Yin, J. J. Account. Public Policy 2018, 37, 226–240. https://doi.org/10.1016/j.jaccpubpol.2018.04.003
Song, C. Catal. Today 2006, 115, 2–32. https://doi.org/10.1016/j.cattod.2006.02.029
Abdulrasheed, A.; Jalil, A. A.; Gambo, Y.; Ibrahim, M.; Hambali, H. U.; Shahul Hamid, M. Y. Renew. Sustain. Energy Rev. 2019, 108, 175–193. https://doi.org/10.1016/j.rser.2019.03.054
Wender, I. Fuel Process. Technol. 1996, 48, 189–297.
Lunsford, J. H. Catal. Today 2000, 63, 165–174. https://doi.org/10.1016/S0920-5861(00)00456-9
Er-Rbib, H.; Bouallou, C.; Werkoff, F. Energy Procedia 2012, 29, 156–165. https://doi.org/10.1016/j.egypro.2012.09.020
Carapellucci, R.; Giordano, L. J. Power Sources 2020, 469, 228391. https://doi.org/10.1016/j.jpowsour.2020.228391
Arora, S.; Prasad, R. RSC Adv. 2016, 6, 108668–108688. https://doi.org/10.1039/c6ra20450c
Li, Z.; Wang, Z.; Kawi, S. ChemCatChem 2019, 11, 202–224. https://doi.org/10.1002/cctc.201801266
Singh, R.; Dhir, A.; Mohapatra, S. K.; Mahla, S. K. Biomass Convers. Biorefinery 2020, 10, 567–587. https://doi.org/10.1007/s13399-019-00417-1
Pakhare, D.; Spivey, J. Chem. Soc. Rev. 2014, 43, 7813–7837. https://doi.org/10.1039/c3cs60395d
Zhang, G.; Liu, J.; Xu, Y.; Sun, Y. Int. J. Hydrogen Energy 2018, 43, 15030–15054. https://doi.org/10.1016/j.ijhydene.2018.06.091
Kambolis, A.; Matralis, H.; Trovarelli, A.; Papadopoulou, C. Appl. Catal. A Gen. 2010, 377, 16–26. https://doi.org/10.1016/j.apcata.2010.01.013
Damyanova, S.; Pawelec, B.; Arishtirova, K.; Huerta, M. V. M.; Fierro, J. L. G. Appl. Catal. B Environ. 2009, 89, 149–159. https://doi.org/10.1016/j.apcatb.2008.11.035
García-Diéguez, M.; Finocchio, E.; Larrubia, M. Á.; Alemany, L. J.; Busca, G. J. Catal. 2010, 274, 11–20. https://doi.org/10.1016/j.jcat.2010.05.020
Seo, H. G.; Ji, S.; Seo, J.; Kim, S.; Koo, B.; Choi, Y.; Kim, H.; Kim, J. H.; Kim, T. S.; Jung, W. C. J. Alloys Compd. 2020, 835, 155347. https://doi.org/10.1016/j.jallcom.2020.155347
Nagai, Y.; Dohmae, K.; Ikeda, Y.; Takagi, N.; Hara, N.; Tanabe, T.; Guilera, G.; Pascarelli, S.; Newton, M. A.; Takahashi, N.; Shinjoh, H.; Matsumoto, S. Catal. Today 2011, 175, 133–140. https://doi.org/10.1016/j.cattod.2011.02.046
Araiza, D. G.; Arcos, D. G.; Gómez-Cortés, A.; Díaz, G. Catal. Today 2019, No. In Press. https://doi.org/10.1016/j.cattod.2019.06.018
Zhang, Q.; Long, K.; Wang, J.; Zhang, T.; Song, Z.; Lin, Q. Int. J. Hydrogen Energy 2017, 42, 14103–14114. https://doi.org/10.1016/j.ijhydene.2017.04.090
Schubert, M. M.; Hackenberg, S.; Van Veen, A. C.; Muhler, M.; Plzak, V.; Behm, J. J. J. Catal. 2001, 197, 113–122. https://doi.org/10.1006/jcat.2000.3069
Das, S.; Sengupta, M.; Patel, J.; Bordoloi, A. Appl. Catal. A Gen. 2017, 545, 113–126. https://doi.org/10.1016/j.apcata.2017.07.044
Jayabal, S.; Saranya, G.; Geng, D.; Lin, L. Y.; Meng, X. J. Mater. Chem. A 2020, 8, 9420–9446. https://doi.org/10.1039/d0ta01530j
Adamiec, J.; Fiedorow, R. M. J.; Wanke, S. E. J. Catal. 1985, 95, 492–500. https://doi.org/10.1016/0021-9517(85)90127-7
van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Nat. Catal. 2019, 2, 955–970. https://doi.org/10.1038/s41929-019-0364-x
Wu, P.; Tan, S.; Moon, J.; Yan, Z.; Fung, V.; Li, N.; Yang, S. Z.; Cheng, Y.; Abney, C. W.; Wu, Z.; Savara, A.; Momen, A. M.; Jiang, D. en; Su, D.; Li, H.; Zhu, W.; Dai, S.; Zhu, H. Nat. Commun. 2020, 11, 1–10. https://doi.org/10.1038/s41467-020-16674-y
Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Science (80-. ). 1981, 211, 1121–1125. https://doi.org/10.1126/science.211.4487.1121
Li, S.; Xu, Y.; Chen, Y.; Li, W.; Lin, L.; Li, M.; Deng, Y.; Wang, X.; Ge, B.; Yang, C.; Yao, S.; Xie, J.; Li, Y.; Liu, X.; Ma, D. Angew. Chemie - Int. Ed. 2017, 56, 10761–10765. https://doi.org/10.1002/anie.201705002
Zhao, E. W.; Zheng, H.; Ludden, K.; Xin, Y.; Hagelin-Weaver, H. E.; Bowers, C. R. ACS Catal. 2016, 6, 974–978. https://doi.org/10.1021/acscatal.5b02632
Chen, B.; Zhao, Q.; Yu, L.; Chen, L.; Crocker, M.; Shi, C. Catal. Sci. Technol. 2020, 10, 4571–4579. https://doi.org/10.1039/d0cy00857e
Bonneviot, L.; Haller, G. L. J. Catal. 1991, 130, 359–373. https://doi.org/10.1016/0021-9517(91)90120-S
Trueba, M.; Trasatti, S. P. Eur. J. Inorg. Chem. 2005, No. 17, 3393–3403. https://doi.org/10.1002/ejic.200500348
Borgna, A.; Garetto, T. F.; Apesteguía, C. R.; Le Normand, F.; Moraweck, B. J. Catal. 1999, 186, 433–441. https://doi.org/10.1006/jcat.1999.2557
García-Diéguez, M.; Pieta, I. S.; Herrera, M. C.; Larrubia, M. A.; Malpartida, I.; Alemany, L. J. Catal. Today 2010, 149, 380–387. https://doi.org/10.1016/j.cattod.2009.07.099
Trovarelli, A. Catal. Rev. 1996, 38, 439–520. https://doi.org/10.1080/01614949608006464
Araiza, D. G.; Gómez-Cortés, A.; Díaz, G. Catal. Today 2020, 349, 235–243. https://doi.org/10.1016/j.cattod.2018.03.016
Rodas-Grapaín, A.; Arenas-Alatorre, J.; Gómez-Cortés, A.; Díaz, G. Catal. Today 2005, 107–108, 168–174. https://doi.org/10.1016/j.cattod.2005.07.167
Yang, M.; Guo, H.; Li, Y.; Dang, Q. J. Nat. Gas Chem. 2012, 21, 76–82. https://doi.org/10.1016/S1003-9953(11)60336-8
Nagai, Y.; Hirabayashi, T.; Dohmae, K.; Takagi, N.; Minami, T.; Shinjoh, H.; Matsumoto, S. J. Catal. 2006, 242, 103–109. https://doi.org/10.1016/j.jcat.2006.06.002
Jiang, S. P. Mater. Sci. Eng. A 2006, 418, 199–210. https://doi.org/10.1016/j.msea.2005.11.052
Claudio-Piedras, A.; Ramírez-Zamora, R. M.; Alcántar-Vázquez, B. C.; Gutiérrez-Martínez, A.; Modragón-Galicia, G.; Morales-Anzures, F.; Pérez-Hernández, R. Catal. Today 2019, No. July. https://doi.org/10.1016/j.cattod.2019.08.013
Hu, L.; Boateng, K. A.; Hill, J. M. J. Mol. Catal. A Chem. 2006, 259, 51–60. https://doi.org/10.1016/j.molcata.2006.06.018
Marceau, E.; Lauron-Pernot, H.; Che, M. J. Catal. 2001, 197, 394–405. https://doi.org/10.1006/jcat.2000.3078
Reyes, P.; Oportus, M.; Pecchi, G.; Fréty, R.; Moraweck, B. Catal. Letters 1996, 37, 193–197. https://doi.org/10.1007/BF00807753
Matijevi?, E.; Hsu, W. P. J. Colloid Interface Sci. 1987, 118, 506–523. https://doi.org/10.1016/0021-9797(87)90486-3
Rodríguez-Carvajal, J. Phys. B Phys. Condens. Matter 1993, 192, 55–69. https://doi.org/10.1016/0921-4526(93)90108-I
Holmgren, A.; Andersson, B.; Duprez, D. Appl. Catal. B Environ. 1999, 22, 215–230. https://doi.org/10.1016/S0926-3373(99)00047-8
Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Pure Appl. Chem. 2015, 87, 1051–1069. https://doi.org/10.1515/pac-2014-1117
Zhang, F.; Chan, S. W.; Spanier, J. E.; Apak, E.; Jin, Q.; Robinson, R. D.; Herman, I. P. Appl. Phys. Lett. 2002, 80, 127–129. https://doi.org/10.1063/1.1430502
Bera, P.; Priolkar, K. R.; Gayen, A.; Sarode, P. R.; Hegde, M. S.; Emura, S.; Kumashiro, R.; Jayaram, V.; Subbanna, G. N. Chem. Mater. 2003, 15, 2049–2060. https://doi.org/10.1021/cm0204775
Fajardie, F.; Tempere, J. F.; Manoli, J. M.; Djega-Mariadassou, G.; Blanchard, G. J. Chem. Soc. - Faraday Trans. 1998, 94, 3727–3735. https://doi.org/10.1039/a805625k
Liu, J.; Hao, M.; Chen, C.; Du, K.; Zhou, Q.; Zou, S.; Xiao, L.; Fan, J. Appl. Surf. Sci. 2020, 528, 147025. https://doi.org/10.1016/j.apsusc.2020.147025
Pennycook, S. J. Ultramicroscopy 1989, 30, 58–69. https://doi.org/10.1016/0304-3991(89)90173-3
Bernal, S.; Calvino, J. J.; Cauqui, M. A.; Gatica, J. M.; Larese, C.; Pérez Omil, J. A.; Pintado, J. M. Catal. Today 1999, 50, 175–206. https://doi.org/10.1016/S0920-5861(98)00503-3
Penner, S.; Wang, D.; Podloucky, R.; Schlögl, R.; Hayek, K. Phys. Chem. Chem. Phys. 2004, 6, 5244–5249. https://doi.org/10.1039/b410124c
Datye, A. K.; Kalakkad, D. S.; Yao, M. H.; Smith, D. J. Journal of Catalysis. 1995, pp 148–153. https://doi.org/10.1006/jcat.1995.1196
Hwang, C. P.; Yeh, C. T. J. Mol. Catal. A Chem. 1996, 112, 295–302. https://doi.org/10.1016/1381-1169(96)00127-6
Melchor-Hernández, C.; Gómez-Cortés, A.; Díaz, G. Fuel 2013, 107, 828–835. https://doi.org/10.1016/j.fuel.2013.01.047
Radivojevi?, D.; Seshan, K.; Lefferts, L. Appl. Catal. A Gen. 2006, 301, 51–58. https://doi.org/10.1016/j.apcata.2005.11.016
Lin, W.; Herzing, A. A.; Kiely, C. J.; Wachs, I. E. J. Phys. Chem. C 2008, 112, 5942–5951. https://doi.org/10.1021/jp710591m
Zhou, A.; Wang, J.; Wang, H.; Li, H.; Wang, J.; Shen, M. J. Rare Earths 2018, 36, 257–264. https://doi.org/10.1016/j.jre.2017.07.008
Yeung, C. M. Y.; Yu, K. M. K.; Fu, Q. J.; Thompsett, D.; Petch, M. I.; Tsang, S. C. J. Am. Chem. Soc. 2005, 127, 18010–18011. https://doi.org/10.1021/ja056102c
Querini, C. A.; Fung, S. C. Catal. Today 1997, 37, 277–283. https://doi.org/10.1016/S0920-5861(97)00020-5
Shamsi, A.; Baltrus, J. P.; Spivey, J. J. Appl. Catal. A Gen. 2005, 293, 145–152. https://doi.org/10.1016/j.apcata.2005.07.002
Lercher, J. A.; Bitter, J. H.; Hally, W.; Niessen, W.; Seshan, K. Stud. Surf. Sci. Catal. 1996, 101 A, 463–472. https://doi.org/10.1016/s0167-2991(98)80284-x
Wu, Z.; Li, M.; Overbury, S. H. J. Catal. 2012, 285, 61–73. https://doi.org/10.1016/j.jcat.2011.09.011.
Snoeck, J. W.; Froment, G. F.; Fowles, M. J. Catal. 1997, 169, 240–249. https://doi.org/10.1006/jcat.1997.1634.
Li, Y.; Li, D.; Wang, G. Catal. Today 2011, 162, 1–48. https://doi.org/10.1016/j.cattod.2010.12.042
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.