Studies on Apparent Molal Compressibility and Molal Volume of ZnSO4 in Aqueous Saccharides Mixed Solvent Systems: A Comparative Study

Authors

  • Susmita Kamila Visvesvaraya Technological University
  • Ganesh D N Rajiv Gandhi Institute of Technology

DOI:

https://doi.org/10.29356/jmcs.v65i2.1240

Keywords:

Speed of sound, thermo-acoustic parameters, apparent molal volume, structure breaking effect, galactose, saccharides

Abstract

Abstract. Different metal ions as well as carbohydrates play vital role in human metabolism. The present investigation emphasizes on zinc sulphate (ZnSO4) in galactose and its comparative study with lactose in aqueous medium at 303.15, 308.15, 313.15K temperature and at 1.0 atmospheric pressure. Different physical quantities such as density, viscosity and speed of sound have been measured as function of concentrations and temperatures for these multi-component solutions. These quantities were further used to evaluate various thermo-acoustic parameters like acoustic impedance, isentropic compressibility, partial molal compressibility, partial molal volume, internal pressure etc,. The results were analyzed to assess the type and extent of association among the components. Moreover, both Zn2+ and SO42- are in the Hofmeister series and there is a possibility of ion-macro molecule interactions in aqueous solution. The breaking of the structure and the solvation of the solute by changing the temperature in mixed solvents are the point of discussion in the present study. Interestingly, the ion-solvation of zinc ion is comparatively more favorable in galactose than in lactose-water mixed solvent systems.

 

Resumen. Diferentes iones metálicos, así como carbohidratos juegan un papel vital en el metabolismo humano. La presente investigación centra su atención sobre el sulfato de zinc (ZnSO4) en galactosa y un estudio comparativo con lactosa en soluciones acuosas a las temperaturas 303.15, 308.15, 313.15K y 1 atm de presión. Se midieron diferentes cantidades físicas como densidad, viscosidad y velocidad del sonido como función de la concentración y la temperatura de las soluciones. Posteriormente, estas cantidades se utilizaron para evaluar distintos parámetros termoacústicos como impedancia acústica, compresibilidad isoentrópica, compresibilidad molal parcial, volumen molal parcial, presión interna, etc. Los resultados se analizaron para evaluar el tipo y grado de la asociación entre los componentes. Mas aún, tanto Zn2+ como SO42- están en las series de Hofmeister y hay una posibilidad de presencia de interacciones ión-macromolécula en la solución acuosa. Un punto de discusión en el presente estudio es el rompimiento de la estructura y la solvatación del soluto debidos al cambio de la temperatura de las soluciones. Es interesante hacer notar que la solvatación de los iones de zinc es comparativamente mas favorable en las soluciones acuosas de galactosa que de lactosa.

Downloads

Download data is not yet available.

Author Biographies

Susmita Kamila, Visvesvaraya Technological University

Bhubaneswar, Odisha, India.

Ganesh D N, Rajiv Gandhi Institute of Technology

Department of Chemistry

Bhubaneswar, Odisha, India.

References

Hussain, M. R. M.; Hassan, M.; Shaik, N. A.; Iqbal, Z. Cent. Eur. J. Med. 2012, 7, 409-419. DOI: https://doi.org/10.2478/s11536-012-0022-z

Lane, T.W.; Francis, M.; Morel, M. A. Proc. Nat Acad. Sci.. 2000, 97, 4627-4631. DOI: https://doi.org/10.1073/pnas.090091397

Staiger, M.P.; Pietak, A.M. Biomaterals 2006, 27,1728-1734. DOI: https://doi.org/10.1016/j.biomaterials.2005.10.003

Pfeiffer, C. C.; Braverman, E. R. Biol. Psychiatry. 1982, 17, 513-532.

Evans, G. W. Clin. Physiol. Biochem. 1986, 4, 94-98.

Khan, W. U.; Sellen, D. W. e-Library of Evidence for Nutrition Actions, University of Toronto, Toronto, Canada 2011.

Nalle, P. B.; Birajdar, S. D.; Shinde, B. R.; Dorik, R. G.; Jadhav, K. M. Cogent. Chem. 2016, 2, 1216721. DOI: https://doi.org/10.1080/23312009.2016.1216721

Thakur, R. C.; Sharma, R.; Meenakshi; Kumar, A. Orient. J. Chem. 2015, 31, 363-369. DOI: 10.13005/ojc/310143

Swain, B.; Mishra, R. N.; Dash, U. N. J. Pure Appl. Ultrason. 2016, 38, 14-22.

Kumar, A.; Bamezai, R. K. Russ. J. Phys. Chem. A. 2018, 92, 2196-2203. DOI:10.1134/S0036024418110043.

Mehra, R.; Malav, B. B. Arabian J. Chem. 2017, 10, S1894-S1900. DOI: https://doi.org/10.1016/j.arabjc.2013.07.018

Nithiyanantham, S.; Palaniappan, L. Chem. Sci. Trans. 2013, 2, 35-40. DOI:10.7598/cst2013.262

Nithiyanantham, S.; Palaniappan, L. Asian J. Chem.. 2010, 22, 5413-5418.

Rohini, V.; Kesavasamy, R.; Chitra Devi, R. Mater. Today: Proc. 2018, 5, 16494-16500. DOI: https://doi.org/10.1016/j.matpr.2018.06.002

Riyazuddeen,; Mohd A. U. J. Chem. Eng. Data 2011, 56, 3504-3509. DOI: https://doi.org/10.1021/je2000205

Thirumaran, S.; Job, K. S. J. Exp. Sci. 2012, 3, 33-39.

Kumar, A.; Rani, R.; Saini, B.; Bamezai, R. K. J. Mol. Liq. 2017, 241, 237-245. DOI: https://doi.org/10.1016/j.molliq.2017.06.004

Kamila, S.; Ganesh, D. N.; Dash, J. K. Phys. Chem. Liquids. 2017, 55, 396-409.DOI: https://doi.org/10.1080/00319104.2016.1218492

Perez-Jimenez, R.; Godoy-Ruiz, R.; Ibarra-Molero, B.; Sanchez-Ruiz, J. M. Biophys. J. 2004, 86, 2414-2429. DOI: https://doi.org/10.1016/S0006-3495(04)74298-8

Curtis, R. A.; Lue, L. A. Chem. Eng. Sci. 2006, 61, 907-923. DOI: https://doi.org/10.1016/j.ces.2005.04.007

Lo Nostro, P.; Ninham, B.W.; Milani, S.; Fratoni, L.; Baglioni, P. Biopolymers. 2006, 81, 136-148. DOI: https://doi.org/10.1002/bip.20389

Sarah, C.; Flores,; Jaibir, K.; Nicole, K.; Xin, C.; Paul, S.; Cremer. J. Phys. Chem. C 2012, 116, 5730?5734. DOI: https://doi.org/10.1021/jp210791j

Yanjie, Z.; Paul, S. Curr. Opin. Chem. Biol. 2006, 10, 658–663. doi: 10.1016/j.cbpa.2006.09.020

Harold, A.; Scheraga. Acc. Chem. Res. 1979, 12, 7-14. DOI: https://doi.org/10.1021/ar50133a002

Roy, M. N.; Chakraborti, P. J. Mex. Chem. Soc. 2014, 58, 106-112.

Ganesh, D.N.; Vinay, S.; Kamila, S. Am. J. Appl. Sci. 2020, 17, 56-68. DOI: https://doi.org/10.3844/ajassp.2020.56.68

Dash, J. K.; Kamila, S. J. T. U. Sci. 2017, 11, 801-807. DOI: https://doi.org/10.1016/j.jtusci.2016.10.007

Thirumaran, S.; Job Sabu, K. Indian J. Pure Appl. Phys. 2009, 47, 87-96.

Thirumaran, S.; Job Sabu, K. J. Exp. Sci. 2012, 3, 33-39.

Kaminsky, M. Disc. Faraday Soc. 1957, 24, 171-179.DOI: https://doi.org/10.1039/df9572400171

Tyrvell, H. J. V.; Kennerly, M. J. J. Chem. Soc. A 1968, 2724-2728. DOI: https://doi.org/10.1039/J19680002774

Kamila, S.; Chakravortty, V.; Jena, S. J. Soln.Chem. 2004, 33, 365-380.

Sadeghi, R.; Shekaari, H.; Hosseini, R. J. Chem. Thermodyn. 2009, 41, 273–289. doi:10.1016/J.JCT.2008.09.005

Bahadur, I.; Deenadayalu, N. J. Solution Chem. 2011, 40, 1528–1543. DOI: https://doi.org/10.1007/s10953-011-9740-0

Zafarani-Moattar, M. T.; Shekaari, H. J. Chem.. Thermodyn. 2005, 37, 1029–1035. DOI: https://doi.org/10.1016/j.jct.2005.01.009

Dhondge, S.S.; Pandhurnekar, C.P.; Garade, S.; Dadure, K. J. Chem. Eng. Data 2011, 56, 3484-3491. DOI: doi/abs/10.1021/je2000099

Dhanalakshmi, A.; Vasantharani, E. J. J. Pure. Appl. Ultrason. 1999, 21, 79-82.

Suryanarayana, C.V. J. Acoust. Soc. Ind. 1976, 4, 75-85.

Suryanarayana, C.V. J Acoust. Soc. Ind. 1979, 7, 131-136.

Hildebrand, J. H. J. Chem. Phys. 1959, 31, 1423-1425.

Bahadur Alisha, S.; Rao, K. C. J. Pure Appl. Ultrason. 2001, 23, 26-30.

Kannappan, A. N.; Palani, R. Ind. J. Pure Appl. Phys. 2007, 45, 573-579.

Jahagirdar, D.V.; Arbad, B. R.; Patil, C. S. Ind. J. Pure Appl. Phys. 2000, 38, 645–650.

Wananje, K. H.; Kabra, K. B. Bionano Frontier. 2015, 8, 381–383.

Kannappan, A. N.; Thirumaran, S.; Palani, R. J. Phys. Sci. 2009, 20, 97-108.

Suryanarayan, C. V.; KuppuSamy. J. Acoust. Soc. Ind. 1981, 9, 4-8.

Gupta, J.; Nain, A. K. J. Mol. Liq. 2019, 278, 262-278. DOI: https://doi.org/10.1016/j.molliq.2019.01.036

Patyar, P.; Kaur, G.; Kaur, T. J. Solution Chem. 2018, 47, 2039-2067. DOI: https://doi.org/10.1007/s10953-018-0829-6

Passynski, A. Acta Physicochim. URSS 1938, 8, 357-373.

Kannappan, V.; Chidambara, V. S. Ind. J. Pure Appl. Phys. 2007, 45, 143-150.

Mehra, R.; Sajnami, H. Ind. J. Pure Appl. Phys. 2000, 38, 762-765.

Marcus, Y. J. Phys. Chem. B 2005, 109, 18541-18545. https://doi.org/10.1021/jp051505k

Palani, R.; Balakrishnan, S.; Arumugam, G. J. Phys. Sci. 2011, 22, 131-141.

Kannappan, A. N.; Kesavasamy, R.; Ponnuswamy, V. ARPN J. Eng. Appl. Sci. 2008, 3, 41–45.

Published

2021-02-22

Issue

Section

Regular Articles