Conceptual DFT Reactivity Descriptors Computational Study of Graphene and Derivatives Flakes: Doped Graphene, Graphane, Fluorographene, Graphene Oxide, Graphyne, and Graphdiyne

Authors

DOI:

https://doi.org/10.29356/jmcs.v64i3.1167

Keywords:

Graphene, graphene derivatives, reactivity indexes, electronic structure calculations, conceptual DFT

Abstract

Abstract. Allotropes of carbon such as graphene, graphane, fluorographene, doped graphene with N, B or P, graphene oxide, graphyne, and graphdiyne were studied through conceptual DFT reactivity descriptor indexes. To understand their chemical behavior and how they interact with different types of molecules, for instance, drugs (due to their potential use in drug carrier applications). This work shows the results of the changes in the global and local reactivity descriptor indexes and geometrical characteristics within the different graphene derivatives and rationalizes how they can interact with small molecules. Molecular hardness, the ionization energy, the electron affinity, electrodonating power index, and electroaccepting power indexes are the computed global reactivity descriptors. While, fukui functions, local softness, and molecular electrostatic potential are the local reactivity descriptors. The results suggest that the hybridization of carbons in the derivatives is kept close to sp3, while for graphene is sp2, the symmetry changes have as consequence changes in their chemical behavior. We found that doping with B or P (one or two atoms doped) and functionalizing with -OH or -COOH groups (as in graphene oxide), decreases the ionization energy in water solvent calculations, allowing for easier electron donation. On the other hand, doping with N atoms and functionalizing with F atoms increases the electron affinity. These types of changes enhance the chemisorption or physisorption by non-covalent interactions and covalent interactions with small molecules, principally, in the carbon atoms nearest to the doped/functionalized atom.

Resumen. Los alótropos de carbono como el grafeno, el grafano, el fluorografeno, el grafeno dopado con N, B o P, el óxido de grafeno, el grafino y el grafidiino se estudiaron mediante los índices de los descriptores de reactividad de la DFT conceptual. Ello, para comprender su comportamiento químico y cómo interactúan con diferentes tipos de moléculas, por ejemplo, fármacos (debido a su posible uso en aplicaciones como transportadores de fármacos). Este trabajo muestra los resultados de los cambios en los índices de los descriptores de reactividad global y local y las características geométricas de los diferentes derivados de grafeno y, predice cómo podrián interactuar con moléculas pequeñas. La dureza molecular, la energía de ionización, la afinidad electrónica, el índice de potencia electrodonadora y electroaceptora son los descriptores DFT de reactividad global calculados. Mientras que las funciones de fukui, la suavidad local y el potencial electrostático molecular son los descriptores de reactividad local. Los resultados sugieren que la hibridación de los carbonos en los derivados se mantiene cerca de sp3, mientras que para el grafeno es sp2, los cambios de simetría tienen como consecuencia cambios en su comportamiento químico. Descubrimos que el dopaje con B o P (uno o dos átomos dopados) y la funcionalización con grupos -OH o -COOH (como en el óxido de grafeno), disminuye la energía de ionización en los cálculos de solvente con agua, lo que permite una donación de electrones más fácil. Por otro lado, el dopaje con átomos de N y la funcionalización con átomos de F aumenta la afinidad electrónica. Estos tipos de cambios mejoran la quimisorción o fisisorción por interacciones no covalentes e interacciones covalentes con moléculas pequeñas, principalmente en los átomos de carbono más cercanos al átomo dopado/funcionalizado.

Downloads

Download data is not yet available.

Author Biography

Juvencio Robles, University of Guanajuato

            I am a full tenured Professor (Titular “C”) with the Faculty of Chemistry and Pharmacy at the University of Guanajuato, in México. My research interests are in Theoretical and computational chemistry and computer aided molecular design where I have pursued projects in the theory and applications of density functional theory and quantum chemistry to the study of the electronic structure of atoms, molecules, clusters and nanostructured materials. I teach courses in quantum chemistry, physics and physical chemistry at both graduate and undergraduate levels.

            I earned my B.S. in Chemistry from the Universidad Nacional Autónoma de México in 1981 and an M.A. and Ph.D. in theoretical chemistry in 1983 and 1986 respectively from the University of North Carolina at Chapel Hill, USA. I am included in the Distinguished Graduate Alumni list (2004) in occasion of the Graduate School’s Centennial of the University of North Carolina-Chapel Hill. I was a postdoctoral fellow in the Theoretical Physics group at the University of Valladolid (SPAIN). I joined the faculty of the Universidad Autónoma Metropolitana-Iztapalapa upon my return to México in 1987, where I stayed until October 1992, when I moved to the University of Guanajuato, (UG). At the UG, I am responsible of the Research Program in Theoretical and Computational Chemistry. I have presented 169 papers at national and international congresses and symposia. I have given 131 invited seminars and conferences and published 82 research papers in indexed scientific journals. Google Scholar reports 1287 citations to my scientific production and an h-index of 19 (sept.2016).

            I am a past recipient of the Cátedra Patrimonial de Excelencia Nivel II fellowship (CONACYT) and presently I hold the federal distinction of National Researcher level 3 (Sistema Nacional de Investigadores Nivel 3). I am a member of the Mexican Academy of Science (Academia Mexicana de Ciencias) and of the Mexican and the American Societies of Chemistry and Physics. Since 2004 I am a full member of the SIGMA XI Scientific Research Society (U.S.) I was a visiting professor during the summers of 1996 and 1998 at the Chemistry Department at Duke University, USA (Host: Prof. Weitao Yang). From September 2000 to August 2001, I was a visiting Professor in Sabbatical at the University of Girona, Spain, and in 2004 and in 2007 at the Department of Chemistry, PUC (Santiago, Chile) and in 2009-10 at the University of Valladolid, Spain. I have been President of the Theoretical Chemistry Division of the Mexican Chemical Society (2005-2009).

            At the University of Guanajuato I have been very interested in developing educational processes and programs. I have hold positions as Coordinator of the Chemistry undergraduate program, Coordinator of the Chemistry graduate program, participated in committees to design new academic programs curricula, appointed as Dean for academic affairs in the Chemistry Faculty area, member of the University Government Board (Junta Directiva), member of the Academic Advisory Board for the UG President (Consejo Academico Consultivo de Rectoría General) and in 2015 I was the UG Academic Vice-Chancellor (Secretario Academico).

References

Falcao, E. H. L.; Wudl, F. J. Chem. Technol. Biotechnol. 2007, 82, 524–531. https://doi.org/10.1002/jctb.1693

Yola, M. L. Curr. Anal. Chem. 2019, 15, 159–165. https://doi.org/10.2174/1573411014666180320111246

Gu, H.; Tang, H.; Xiong, P.; Zhou, Z. Nanomaterials 2019, 9, 130. https://doi.org/10.3390/nano9010130

Kang, J.; Wei, Z.; Li, J. ACS Appl. Mater. Interfaces 2019, 11, 2692–2706. https://doi.org/10.1021/acsami.8b03338

Yeo, J.; Jung, G. S.; Martín-Martínez, F. J.; Beem, J.; Qin, Z.; Buehler, M. J. Adv. Mater. 2019, 1805665, 1–24. https://doi.org/10.1002/adma.201805665

Novoselov, K. S.; Geim, A. K.; Morozov, S. V; Jiang, D.; Zhang, Y.; Dubonos, S. V; Grigorieva, I. V; Firsov, A. A. Science. 2004, 306, 666–669. https://doi.org/10.1126/science.1102896

Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183–191. https://doi.org/10.1038/nmat1849

Baughman, R. H.; Eckhardt, H.; Kertesz, M. J. Chem. Phys. 1987, 87, 6687–6699. https://doi.org/10.1063/1.453405

Cranford, S. W.; Brommer, D. B.; Buehler, M. J. Nanoscale 2012, 4, 7797–7809. https://doi.org/10.1039/C2NR31644G

Peng, Q.; Dearden, A. K.; Crean, J.; Han, L.; Liu, S.; Wen, X.; De, S. Nanotechnol. Sci. Appl. 2014, 7, 1–29. https://doi.org/10.2147/NSA.S40324

Zhang, W.; Wu, L.; Li, Z.; Liu, Y. RSC Adv. 2015, 5, 49521–49533. https://doi.org/10.1039/C5RA05051K

Shin, D.-W.; Kim, T. S.; Yoo, J.-B. Mater. Res. Bull. 2016, 82, 71–75. https://doi.org/10.1016/j.materresbull.2016.02.009

Yadav, R.; Dixit, C. K. J. Sci. Adv. Mater. Devices 2017, 2, 141–149. https://doi.org/10.1016/j.jsamd.2017.05.007

Agnoli, S.; Favaro, M. J. Mater. Chem. A 2016, 4, 5002–5025. https://doi.org/10.1039/C5TA10599D.

Chronopoulos, D. D.; Bakandritsos, A.; Pykal, M.; Zbo?il, R.; Otyepka, M. Appl. Mater. today 2017, 9, 60–70. https://doi.org/10.1016/j.apmt.2017.05.004

Singh, D. P.; Herrera, C. E.; Singh, B.; Singh, S.; Singh, R. K.; Kumar, R. Mater. Sci. Eng. C 2018, 86, 173–197. https://doi.org/10.1016/j.msec.2018.01.004

Lee, J.-U.; Yoon, D.; Cheong, H. Nano Lett. 2012, 12, 4444–4448. https://doi.org/10.1021/nl301073q.

Luo, B.; Liu, S.; Zhi, L. Small 2012, 8, 630–646. https://doi.org/10.1002/smll.201101396

Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793–1874. https://doi.org/10.1021/cr990029p

Cortés Arriagada, D. J. Mol. Model. 2013, 19, 919–930. https://doi.org/10.1007/s00894-012-1642-6

Saha, B.; Bhattacharyya, P. K. RSC Adv. 2016, 6, 79768–79780. https://doi.org/10.1039/C6RA15016K

SreeHarsha, N.; Maheshwari, R.; Al-Dhubiab, B.E.; Tekade, M.; Sharma, M.C.; Venugopala, K.N.; Tekade, R.K.; Alzahrani, A.M. Int. J. Nanomedicine. 2019,14, 7419–7429. doi:10.2147/IJN.S211224

Janak, J. F. Phys. Rev. B 1978, 18, 7165–7168. https://doi.org/10.1103/PhysRevB.18.7165

Casida, M. E. Phys. Rev. B 1999, 59, 4694–4698. https://doi.org/10.1103/PhysRevB.59.4694

Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512–7516. https://doi.org/10.1021/ja00364a005

Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049–4050. https://doi.org/10.1021/ja00326a036

Gázquez, J. L.; Cedillo, A.; Vela, A. J. Phys. Chem. A 2007, 111, 1966–1970. https://doi.org/10.1021/jp065459f

Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708–5711. https://doi.org/10.1021/ja00279a008

Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. 1985, 82, 6723–6726. https://doi.org/10.1073/pnas.82.20.6723

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09. Revision C.01, Gaussian, Inc, Wallingford CT. Gaussian, Inc.: Wallingford CT 2010.

Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125, 194101. https://doi.org/10.1063/1.237099

Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654–3665. https://doi.org/10.1063/1.444267

Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129–138. https://doi.org/10.1007/BF00549096.

Miertuš, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117–129. https://doi.org/10.1016/0301-0104(81)85090-2

Barnard, A. S.; Snook, I. K. J. Chem. Phys. 2008, 128, 94707. https://doi.org/10.1063/1.2841366

Silva, A. M.; Pires, M. S.; Freire, V. N.; Albuquerque, E. L.; Azevedo, D. L.; Caetano, E. W. S. J. Phys. Chem. C 2010, 114, 17472–17485. https://doi.org/10.1021/jp105728p

Kuc, A.; Heine, T.; Seifert, G. Phys. Rev. B 2010, 81, 85430. https://doi.org/10.1103/PhysRevB.81.085430

Deng, J.-P.; Chen, W.-H.; Chiu, S.-P.; Lin, C.-H.; Wang, B.-C. Molecules 2014, 19, 2361–2373. https://doi.org/10.3390/molecules19022361

Puigdollers, A. R.; Alonso, G.; Gamallo, P. Carbon N. Y. 2016, 96, 879–887. https://doi.org/10.1016/j.carbon.2015.10.043

Pearson, R. G. Acc. Chem. Res. 1993, 26, 250–255. https://doi.org/10.1021/ar00029a004.

Peyghan, A. A.; Rastegar, S. F.; Hadipour, N. L. Phys. Lett. A 2014, 378, 2184–2190. https://doi.org/10.1016/j.physleta.2014.05.016

Ketabi, N.; Tolhurst, T. M.; Leedahl, B.; Liu, H.; Li, Y.; Moewes, A. Carbon N. Y. 2017, 123, 1–6. https://doi.org/10.1016/j.carbon.2017.07.037

Additional Files

Published

2020-07-09

Issue

Section

Regular Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.