Mercury Speciation in Contaminated Soils from Old Mining Activities in Mexico Using a Chemical Selective Extraction

Authors

  • Irma Gavilán-García Universidad Nacional Autónoma de México
  • Elvira Santos-Santos Universidad Nacional Autónoma de México
  • Luis R. Tovar-Gálvez Instituto Politécnico Nacional
  • Arturo Gavilán Instituto Nacional de Ecología
  • Sara Suárez Universidad Nacional Autónoma de México
  • Jesús Olmos Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.29356/jmcs.v52i4.1131

Keywords:

Mercury speciation, soil contamination, mining wastes, chemical selective extraction

Abstract

Amalgamation was heavily used in mining since 1557 in Spanish Colonies. In Mexico and other parts of Latin-America,
this process generated tailings which were left aside in the mine backyards. In the valley of Zacatecas, tailings were carried out of the mines due to the run-off from the mountains and contaminated most of the Zacatecan Valley which most important economic activity is agricultural (crop and livestock raising). The main concern in this area is the high level of total mercury found in previous studies. So far, various research studies have been conducted in Mexico to
identify the contamination by total mercury in contaminated soils. However, research has not been developed to determine the available fraction by an analysis of the chemical species present in contaminated sites, which represent a risk to human health and the environment. The aim of this study is to develop a mercury sequential chemical extraction methodology with appropriate conditions for identifying: 1) water-soluble fraction, 2) elemental fraction, 3) interchangeable fraction, 4) strongly bound fraction, 5) organic fraction, 6) fraction as sulphides and 7) residual fraction. With this, it might be determined if the mercury species present in mining soils in the state of Zacatecas, Mexico represent a potential risk because of its mobility in the different environmental compartments. Results show that chemical species in the towns of Osiris and La Zacatecana (HgS and amalgamated mercury) have high stability and low mobility.

 

, Soil contamination, Mining wastes,
Chemical selective extraction

Downloads

Download data is not yet available.

Author Biographies

Irma Gavilán-García, Universidad Nacional Autónoma de México

Unidad de Gestión Ambiental, Facultad de Química

Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD) IPN

Elvira Santos-Santos, Universidad Nacional Autónoma de México

Unidad de Gestión Ambiental, Facultad de Química

Luis R. Tovar-Gálvez, Instituto Politécnico Nacional

Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD

Sara Suárez, Universidad Nacional Autónoma de México

Unidad de Gestión Ambiental, Facultad de Química

Jesús Olmos, Universidad Nacional Autónoma de México

Unidad de Gestión Ambiental, Facultad de Química

References

1. Nriagu, J. The biogeochemistry of mercury in the environment. Elsevier/North Holland. Biomedical Press, 1979.
2. De Lacerda, L.; Solomons, W. Mercury from gold and silver mining: A chemical time bomb? Springer–Verlag Publishers, 1998.
3. Lovley, D. Microbial mercury reduction. Environmental microbemetal interactions. ASM Press, 2000, 177-197.
4. Environmental Protection Agency (EPA). Mercury study report to congress: Fate and transport of mercury in the environment. Volume III. EPA 452/R-97-005, 1997.
5. De Lacerda, L. Water, Air and Soil Pollut. 1997, 97, 209-221.
6. Mason, R.; Fitzgerald, W.; Morel, F. Geochim. Cosmochim. Acta. 1994, 58, 3191-3198.
7. Bernaus, A.; Gaona, X.; Valiente, M. J. Environ. Monit. 2005, 7, 771-777.
8. Environmental Protection Agency (EPA). Locating and estimating air emissions from sources of mercury and mercury compounds. EPA/454/R-93-023, 1993.
9. Johnson, D.; Whittle, K. J. Chem. Soc. Dalton Trans. 1999, 4239– 4243.
10. Lang, M. The state monopoly of mercury in Colonial Mexico (1550-1710). Fondo de Cultura Económica, 1977, 35-60.
11. Camargo, J. Chemosphere 2002, 48, 51-57.
12. Brading, D.; Cross, H. Hispanic Am. Hist. Rev. 1972, 52, 545-579.
13. Tessier, A.; Campbell, P.; Bisson, M. Anal. Chem. 1979, 51, 844-851.
14. Davidson, C.; Duncan, A.; Littlejohn, D.; Ure, A.; Garden, L. Analyt. Chim. Acta. 1998, 363, 45-55.
15. Rauret, G.; Lopez-Sanchez, J.; Sahuquillo, A.; Rubio, R.;
Davidson, C.; Ure, A.; Quevauviller, P. J. Environ. Monit. 1999, 1, 57-61.
16. Templeton, D.; Ariese, F.; Cornelis, R.; Danielsson, L.; Muntau, H.; Van Leeuwen, H.; Lobinski, R. Pure Appl. Chem. 2000, 72,1453-1470.
17. Di Giulio, R.; Ryan, E. Water, Air Soil Pollut. 1987, 33, 205-219.
18. Biester, H.; Scholz, C. Environ. Sci. Tech. 1997, 31, 233-239.
19. Bloom, N.; Preus, E.; Katon, J.; Hiltner, M. Anal. Chim. Act. 2003, 479, 233-248.
20. Panyametheekul, S. 2004. Environmental Geochemistry and Health. 2004, 26, 51-57.
21. Sladek, C.; Gustin, M. Applied geochemistry 2003, 18, 567-576.
22. Santos, E.; Yarto-Ramírez, M.; Gavilán-García, I.; Castro-Díaz, J.; Gavilán-García, A.; Rosiles, R.; Suárez, S.; López–Villegas, T. 2006. J. Mex. Chem. Soc. 2006, 50, 57-63.
23. Instituto Nacional de Estadística, Geografía e Informática(INEGI). Charts F13-6 of Zacatecas (Topography, water and underground water, Edafology, soil use). Mexico. 2001.
24. http://www.inegi.gob.mx/territorio/espanol/datosgeogra/fisigeo/suelos.html, accessed in April, 2008.
25. SEMARNAT. Action plan for La Zacatecana dam for the contentionof heavy metals. Mexico. 2002.
26. McBean, E. Statistical procedures for analysis of environmentalmonitoring data & risk assessment. Prentice Hall PTR, 1998.
27. Iskander, F.; Vega-Carrillo, H.; Manzanares, E. Sci. Total Environ.1994, 148, 45-48.
28. Pearson, R. Phase II – Stage I of the mercury task forcestudy, Zacatecas, Mexico. North American Commission of Environmental Cooperation, 2003.
29. Ogura, T.; Ramirez, O.; Arrollo-Villaseñor, Z.; Hernández, M.;Palafox-Hernández, P.; García, A.; Quintus, F. Water, Air Soil Pollut. 2003, 147, 167-177.
30. http://www.semarnat.gob.mx/leyesynormas/Pages/normasoficialesmexicanasvigentes.aspx, accessed in October, 2008.
31. Ministry of Environment and Energy. Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario,1996.
32. ARC GIS 8.3. ESRI Geographic Information System and Mapping Software. IDW Interpolation Model, 2003.
33. Wander, M.; Yang, X. Soil Biol. & Biochem. 2000, 32, 1151-1160.
34. Roldán, A.; Caravaca, F.; Hernández, M.; García, C.; Sánchez-Brito, C.; Velásquez, M.; Tiscareño, M. Soil Till. Res. 2003, 72,65-73.
35. http://www.epa.gov/epaoswer/hazwaste/test/main.htm, accessed
in June, 2008.
36. Ebinghaus, R.; Turner, R.; De Lacerda, L.; Vasiliev, O.; Salomons, W. Mercury contaminated sites: Characterization, risk assessment and remediation. Springer–Verlag Publishers, 1999.
37. Wallschläger, D.; Desai, M.; Spengler, M.; Wilken, R. J. Environ. Qual. 1998, 27, 1034-1044.
38. Kim, C.; Bloom, N.; Rytuba, J.; Brown, J. Environ. Sci. Technol. 2003, 37, 5102-5108.
39. Taverniers, I.; De Loose, M.; Van Bockstael, E. Trends in Analytical Chemistry. 2004, 23, 8.
40. Davis, A.; Bloom, N.; Que, S. Risk analysis. 1997, 17, 557-569.
41. Schaider, L.; Senn, D.; Brabander, D.; McCarthy, K.; Shine, J. Environ. Sci. Technol. 2007, 41, 4164-4171.

Downloads

Published

2019-12-12

Issue

Section

Regular Articles

Most read articles by the same author(s)