Use of Chemically Modified Titanium Dioxide Particles to Mediate the Non-isothermal Cold Crystallization of Poly(latic acid)
DOI:
https://doi.org/10.29356/jmcs.v64i2.1126Keywords:
Non-isothermal Crystallization, titanium dioxide, composites, Chemical Modification, Poly(lactic acid)Abstract
In this work, the effect of the chemical modification of titanium dioxide particles on the non-isothermal crystallization process of polylactic acid (PLA) was studied. Cold crystallization in some polymers occurs above the glass transition temperature (Tg) when the polymer chains gain sufficient mobility to organize themselves into the ordered structure (i.e. the crystal structure) by folding the chains. Cold crystallization in general is caused by the ordering of the molecular chains in the crystalline PLA due to the increased mobility during heating. Through an analysis of the cool crystallization process in DSC at different cooling rates, it was observed that the behavior of PLA and its composites made with titanium dioxide, neat and functionalized with dicarboxylic acids, can be described through the models used for crystallization of the polymer carrying out during cooling, such as Mo’s and Jeziorny’s model. In addition, it was determined that the chemical modification of TiO2 performed with silane increases the crystallization rate in the last step of the process; while the chemical modification with dicarboxylic acid has an accelerated effect on the crystal formation process attributed to the affinity between the aliphatic part of this group and the polymer chains. Also, it was shown that the inclusion of the silanized particles has no effect on the energy requirement compared to the pure PLA process; however, the addition of particles with the dicarboxylic acid decreases the energy value required to complete the crystalline state due to affinity at the surface to immobilize the polymer chains. Finally, it is emphasized that the activation energy required to perform the crystallization of PLA and its composites has positive values, which is an indicator that the crystallization was performed while heating, after reaching and passing the glass transition temperature and before melting.
Downloads
References
Sánchez MS, Gómez Ribelles JL, Hernández Sánchez F, Mano JF. Thermochim Acta. 2005; 430, 201-210. DOI:10.1016/j.tca.2005.01.066.
Carrasco F, Pagès P, Gámez-Pérez J, Santana OO, Maspoch ML. Polym Degrad Stab. 2010; 95,116-125. DOI:10.1016/J.POLYMDEGRADSTAB.2009.11.045.
Kodal M, Wis AA, Ozkoc G. Radiat Phys Chem. 2018; 153, 214-225. DOI:10.1016/j.radphyschem.2018.10.018
Camargo PHC, Satyanarayana KG, Wypych F. Mater Res. 2009; 12,1-39. DOI:10.1590/S1516-14392009000100002.
Lunt J. Polym Degrad and Stabil. 1998; 97,145-152.
Tadakazu M, Toru M. Polymer (Guildf). 1998; 39, 5515-5521.
Yasuniwa M, Tsubakihara S, Iura K, Ono Y, Dan Y, Takahashi K. Polymer (Guildf). 2006; 47, 7554-7563. DOI:10.1016/j.polymer.2006.08.054.
Stolt M, Södergård A, Prog. Polym. Sci. 2002; 27, DOI: 10.1016/S0079-6700(02)00012-6.
Pillin I, Montrelay N, Bourmaud A, Grohens Y. Polym Degrad and Stabil. 2008; 93, DOI:10.1016/j.polymdegradstab.2007.12.005.
Kaya D, McNally T, Douglas P, Coburn N, Gupta J. Adv Ind Eng Polym Res. 2018; 1, 99-110. DOI:10.1016/j.aiepr.2018.06.001.
Iannace S, Maffezzoli A, Leo G, Nicolais L. Polymer (Guildf). 2001; 42, 3799-3807. DOI:10.1016/S0032-3861(00)00744-8.
Tsuji H, Ikada Y. Polymer. 1995; 36, 2709-2716. doi:10.1016/0032-3861(95)93647-5.
Rong MZ, Zhang MQ, Pan SL, Lehmann B, Friedrich K. Polym Int. 2004; 53, 176-183. DOI:10.1002/pi.1307
Wang J, Dou Q. J Macromol Sci Part B Phys. 2007; 46, 987-1001. DOI:10.1080/00222340701457311
Wang C, Zhang Z, Ding Q, Jiang J, Li G, Mai K. Thermochim Acta. 2013; 559,17-22. DOI:10.1016/J.TCA.2013.02.021
Liu T, Mo Z, Zhang H. J Appl Polym Sci. 1998; 67, 815-821. DOI:10.1002/(SICI)1097-4628(19980131)67:5<815::AID-APP6>3.0.CO;2-W.
Jeziorny A. Polymer (Guildf). 1978; 19, 1142-1144. DOI:10.1016/0032-3861(78)90060-5
Lim LT, Auras R, Rubino M. Prog Polym Sci. 2008; 33, 820-852. DOI:10.1016/j.progpolymsci.2008.05.004.
Kong W, Zhu B, Su F, et al. Polymer (Guildf). 2019; 168, 77-85. DOI:10.1016/J.POLYMER.2019.02.019.
Lizundia E, Petisco S, Sarasua JR. J Mech Behav Biomed Mater. 2013; 17, 242-251. DOI:10.1016/j.jmbbm.2012.09.006.
Ple?a I, No?ingher P V., Schlögl S, Sumereder C, Muhr M. Polymers (Basel). 2016; 8. DOI:10.3390/polym8050173.
Keith Nelson J. IEEE; 2007, 229-235. DOI:10.1109/EEIC.2007.4562626
Z. Han RG. Nano Science and Technology Institute. 2008.
Esthappan SK, Kuttappan SK, Joseph R. Thermal and mechanical properties of polypropylene/titanium dioxide nanocomposite fibers. Mater Des. 2012;37:537-542. DOI:10.1016/J.MATDES.2012.01.038.
Esthappan SK, Kuttappan SK, Joseph R. Polym Degrad Stab. 2012; 97, 615-620. DOI:10.1016/J.POLYMDEGRADSTAB.2012.01.006.
Zhou R-J, Burkhart T. J Mater Sci. 2011; 46, 1228-1238. DOI:10.1007/s10853-010-4901-x
Forhad Mina M, Seema S, Matin R, et al. Polym Degrad Stab. 2009; 94, 183-188. DOI:10.1016/J.POLYMDEGRADSTAB.2008.11.006.
Wang C, Zhang Z, Ding Q, Jiang J, Li G, Mai K. Thermochim Acta. 2013; 559, 17-22. DOI:10.1016/J.TCA.2013.02.021.
Supaphol P, Thanomkiat P, Junkasem J, Dangtungee R. Polym Test. 2007; 26, 20-37. DOI:10.1016/J.POLYMERTESTING.2006.07.011.
Fukuyama Y, Senda M, Kawai T, et al. J Therm Anal Calorim. 2014; 117, 1397-1405. DOI:10.1007/s10973-014-3881-5.
Fragiadakis D, Pissis P, Bokobza L. Polymer (Guildf). 2005; 46, 6001-6008. DOI:10.1016/J.POLYMER.2005.05.080.
Gopakumar TG, Lee JA, Kontopoulou M, Parent JS. Polymer (Guildf). 2002; 43, 5483-5491. DOI:10.1016/S0032-3861(02)00403-2.
Ishibai Y, Nishikawa T, Miyagishi S. J Dispers Sci Technol. 2006; 27, 1093-1098. DOI:10.1080/01932690600857147.
Li J, He W, Long L, et al. J Vinyl Addit Technol. 2018; 24, 58-67. DOI:10.1002/vnl.21525.
Alvarado ED, Juárez MGP, Pérez CP, Pérez E, Calderón JAG. J Mex Chem Soc. 2019; 63,154-168. DOI:10.29356/jmcs.v63i2.741.
Gonzalez-Calderon JA, Vallejo-Montesinos J, Mata-Padilla JM, Pérez E, Almendarez-Camarillo A. J Mater Sci. 2015; 50, 7998-8006. DOI:10.1007/s10853-015-9365-6.
Karger-Kocsis. J. Polypropylene Structure, Blends and Composites : Volume 3, 1995. Netherlands. Springer.
Askeland DR, Phule PP. Ciencia e Ingeneria de Los Materiales. 2004. Mexico. Thomson.
RSC. TiO2: Learn Chem Enhancing Learn Teach with RSC. 2018; 6.
Šupová M, Martynková GS, Barabaszová K. Sci Adv Mater. 2011; 3, 1-25. DOI:10.1166/sam.2011.1136.
Matthews FL, Rawlings RD, Rees D. Composite Materials : Engineering and Science. Chapman & Hall; 1994.
Tanaka T, Montanari GC, Mulhaupt R. IEEE Trans Dielectr Electr Insul. 2004; 11, 763-784. DOI:10.1109/TDEI.2004.1349782.
Zhu Y, Buonocore GG, Lavorgna M, Ambrosio L. Polym Compos. 2011; 32, 519-528. DOI:10.1002/pc.21068.
Muñoz-Bonilla A, Cerrada M, Fernández-García M, eds. Cambridge: Royal Society of Chemistry; 2013. DOI:10.1039/9781782624998
Wang Z, Li G, Peng H, Zhang Z, Wang X. J Mater Sci. 2005; 40, 6433-6438. DOI:10.1007/s10853-005-1713-5.
Essawy AA, Ali AE-H, Abdel-Mottaleb MSA. J Hazard Mater. 2008; 157, 547-552. DOI:10.1016/j.jhazmat.2008.01.072.
Tahiri Alaoui O, Nguyen QT, Mbareck C, Rhlalou T. Appl Catal A Gen. 2009; 358, 13-20. DOI:10.1016/J.APCATA.2009.01.032.
Zan L, Tian L, Liu Z, Peng Z. Appl Catal A Gen. 2004; 264, 237-242. DOI:10.1016/J.APCATA.2003.12.046.
Meng X, Wang H, Qian Z, et al. Polym Compos. 2009; 30, 543-549. DOI:10.1002/pc.20584.
Primo Yúfera E. Universidad Politécnica de Valencia. Reverte. España.
Gonzalez-Calderon JA, Vallejo-Montesinos J, Almendarez-Camarillo A, Montiel R, Pérez E. Thermochim Acta. 2016; 631. DOI:10.1016/j.tca.2016.03.007.
Rider A., Arnott D. Int J Adhes Adhes. 2000; 20, 209-220. DOI:10.1016/S0143-7496(99)00046-9.
Article J. Mex. Chem. Soc. 2020, 64(2)
Regular Issue
©2020, Sociedad Química de México
ISSN-e 2594-0317
Wu HF, Dwight DW, Huff NT. Compos Sci Technol. 1997; 57, 975-983. DOI:10.1016/S0266-3538(97)00033-X.
Taulemesse J-M, Bergeret A, Longerey M, Le Moigne N, Bénézet J-C. Ind Crops Prod. 2013; 52, 481-494. DOI:10.1016/j.indcrop.2013.11.022.
Xie Y, Hill CAS, Xiao Z, Militz H, Mai C. Compos Part A Appl Sci Manuf. 2010; 41 806-819. DOI:10.1016/j.compositesa.2010.03.005.
González-Rodríguez V, Lizeth Zapata-Tello D, Vallejo-Montesinos J, Zárraga Núñez R, Gonzalez-Calderon JA, Pérez E. J Dispers Sci Technol. 2018; 1-7. DOI:10.1080/01932691.2018.1496828.
López-Zamora L, Martínez-Martínez HN, González-Calderón JA. Mater Chem Phys. 2018; 217, 285-290. DOI:10.1016/j.matchemphys.2018.06.063.
Anastacio-López ZS, Gonzalez-Calderon JA, Saldivar-Guerrero R, et al. J Mater Sci. 2019; 54, 427-443. DOI:10.1007/s10853-018-2866-3.
Huang Y, Yan W, Xu Y, Huang L, Chen Y. Chem Synth Appl graphene carbon Mater. 2016; 43-52. DOI:10.1002/9783527648160.ch3.
Yan JL, Chen GJ, Cao J, Yang W, Xie BH, Yang MB. New Carbon Mater. 2012; 27, 370-376. DOI:10.1016/S1872-5805(12)60022-5.
Sharma RK, Sharma S. Dalt Trans. 2014; 43, 1292-1304. DOI:10.1039/c3dt51928g.
Soares IL, Chimanowsky JP, Luetkmeyer L, Silva EO da, Souza D de HS, Tavares MIB. J Nanosci Nanotechnol. 2014; 15, 5723-5732. DOI:10.1166/jnn.2015.10041.
Smith BC. CRC Press; US. 1999.
Dai X, Zhang Z, Wang C, Ding Q, Jiang J, Mai K. Compos Part A Appl Sci Manuf. 2013; 49, 1-8. DOI:10.1016/j.compositesa.2013.01.016.
Mitra T, Sailakshmi G, Gnanamani A, Mandal AB. Int J Polym Mater Polym Biomater. 2013; 62, 572-582. DOI:10.1080/00914037.2013.769161.
Silverstein R. J Mol Struct. 1976; 30, 424-425. DOI:10.1016/0022-2860(76)87024-x.
Gradzik B, El Fray M, Wisniewska E. Chemik. 2011; 65:621-626.
Meroni D, Lo Presti L, Di Liberto G, et al. J Phys Chem C. 2017; 121, 430-440. DOI:10.1021/acs.jpcc.6b10720.
Liu L, Mei A, Liu T, et al. J Am Chem Soc. 2015; 137, 1790-1793. DOI:10.1021/ja5125594.
Sodipo BK, Aziz AA. J Nanotechnol. 2014; 5, 1472-1476. DOI:10.3762/bjnano.5.160.
Majoul N, Aouida S, Bessaïs B. Appl Surf Sci. 2015; 331, 388-391. DOI:10.1016/j.apsusc.2015.01.107.
Zhang Z, Tao Y, Yang Z, Mai K. Eur Polym J. 2008; 44, 1955-1961. DOI:10.1016/j.eurpolymj.2008.04.022.
Kulkarni SA, Ogale SB, Vijayamohanan KP. J Colloid Interface Sci. 2008; 318, 372-379. DOI:10.1016/j.jcis.2007.11.012.
Benoit DN, Zhu H, Lilierose MH, et al. Anal Chem. 2012. 84, 9238?9245. DOI:10.1021/ac301980a.
Ma W, Wang X, Zhang J. J Therm Anal Calorim. 2011; 103, 319-327. DOI:10.1007/s10973-010-0961-z.
Marco C, Gómez MA, Ellis G, Arribas JM. J Appl Polym Sci. 2002; 84, 1669-1679. DOI:10.1002/app.10546.
Friedman HL. J Polym Sci Part C Polym Symp. 2007; 6, 183-195. DOI:10.1002/polc.5070060121.
Yang J nian, Xu Y xuan, Nie S bin, Cheng G jun, Tao Y lun, Zhu J bo. Polym Degrad Stab. 2018; 158, 176-189. DOI:10.1016/j.polymdegradstab.2018.11.008.
Naffakh M, Marco C, Ellis G. Polymers (Basel). 2015; 7, 2175-2189. DOI:10.3390/polym7111507.
Papageorgiou GZ, Panayiotou C. Thermochim Acta. 2011; 523, 187-199. DOI:10.1016/j.tca.2011.05.023.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.