Theoretical Study of Reactivity Based on the Hard-Soft/Acid-base (HSAB) in Isatoic Anhydride and Some Derivatives
DOI:
https://doi.org/10.29356/jmcs.v52i4.1075Keywords:
isatoic anhydride (ISA), molecular reactivity, Fukui functions, nucleophilic attack, electrophilic attackAbstract
In order to utilize the great chemical potential of isatoic anhidryde (ISA) as a precursor of several derived products, it was most important to determine its molecular reactivity. To this end, we have carried out theoretical calculations on ISA and some of its derivatives by using density functional theory (DFT), MP2, HF levels of theory with a correlated augmented basis set aug-cc-pvDZ. The B3LYP/aug-cc-pvDZ level yielded theoretical results that correlated very well with the experimental work. We used this method to get the global and local descriptors with Koopman’s approximation, taking into account two main ISA structural components: the aromatic and heterocyclic systems. The Fukui functions were calculated on the formalism of the quantum theory of atoms in molecules (QTAIM) which is a method for condensation. These theoretical calculations allow to study the electron-withdrawing or donating substituent of the aromatic ring. The results showed that, globally, the most reactive compound is ISA with the OCH3 substituent. Locally, it is confirmed that C2 is the molecular region most susceptible to suffer a nucleophilic attack against ISA.
Downloads
References
2. Clark, R. H.; Wagner, E. C. J. Org. Chem. 1944, 9, 55-67.
3. Ger. pat. 500, 916, Frdl. 1930, 17, 500.
4. Sherwin Williams, Technical Bulletin No. 152. Available from Sherwin Williams Co.
5. Coppola, G. M. Synthesis 1980, 7, 505-536.
6. Shvekhgeimer, M. G. A. Chem. Heterocycl. Compd. 2001, 37, 385-443.
7. Weissleder. R.; Kelly, K.; Sun, E.; Shtatland, T.; Josephson, L. Nature Biotechnology 2005, 23, 1418-1423.
8. Kozminykh, E. N.; Goncharov, V. I.; Aitken, R. A.; Kozminykh, V. O.; Lomidze, K. Sh. Chem. Heterocycl. Comp. 2006, 42, 1107-1108.
9. Matos, M. A. R.; Miranda, M. S.; Morais, V. M. F.; Liebman, J. F. Org. Biomol. Chem. 2004, 2, 1647-1650.
10. Matos, M. A. R.; Miranda, M. S.; Morais, V. M. F.; Liebman, J. F. Org. Biomol. Chem. 2003, 1, 2566-2571.
11. Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.
12. Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049-4050.
13. Yang, W.; Parr, R.G. Proc. Natl. Acad. Sci. USA, 1985, 82, 6723-6726.
14. Ghosh, S. K.; Berowitz, M. J. Chem. Phys. 1985, 83, 2976-2983.
15. Roy, R. K.; Krishnamurty, S.; Geerlings, P.; Pal, S. J. Phys. Chem. 1998, 102, 3746-3755.
16. Berkowitz, M.; Parr, R. G. J. Phys. Chem. 1988, 88, 2554-2557.
17. Pearson, R. G. J. Am. Chem. Soc. 1963, 83, 3533-3539.
18. Pearson, R. G. Chemical Hardness: Aplications from Molecules to Solid, Wiley-VCH Verlag GMBH, Weinheim, 1997.
19. Pearson, R. G. Science, 1966, 151, 172-177.
20. Sen, K. D.; Mingos, D. M. P. Chemical Hardness, Structure and Bonding, Ed., Springer-Verlag, Berlin, 1993.
21. Lee, C.; Yang, W.; Parr, R. G. J. Mol. Struct. (THEOCHEM), 1988, 163, 305-313.
22. Pearson, R. G. Coord. Chem. Rev. 1990, 100, 403-425.
23. Pearson, R. G.; Dowden, H. R., Hard and Soft Acids and Bases, Ed. Stroudsburg, PA, 1973.
24. Chattaraj, P. K. J. Phys. Chem. A. 2001, 105, 511-513.
25. Pearson, R. G. J. Chem. Educ. 1987, 64, 561-567.
26. Parr, R. G.; Chattaraj, P. K. J. Am. Chem. Soc. 1991, 113, 1854-1855.
27. Chattaraj, P. K.; Liu, G. H.; Parr, R. G. Chem. Phys. Lett. 1995, 237, 171-176.
28. Fukui, K. Science, 1982, 217, 747-784.
29. Fukui, K.; Yonezawa, T.; Shingu, H. J. Chem. Phys. 1952, 20, 722-725.
30. Fukui, K.; Yonezawa, T.; Nagata, C.; Shingu, H. J. Chem. Phys. 1954, 22,1433-1442.
31. Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708-5711.
32. Klopman, G. Chemical Reactivity and Reaction Paths, Wiley, New York, 1974.
33. Klopman, G. J. Am. Chem. Soc. 1968, 90, 223-234.
34. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165-195.
35. Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136 B, 864-871.
36. Parr, R. G.; Donelly, R. A.; Levy, M.; Place, W. E. J. Chem. Phys. 1978, 72, 3669- 3673.
37. Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512-7516.
38. Vela, A.; Gázquez, J. L. J. Am. Chem. Soc. 1990, 112, 1490-1492.
39. Kashino, S.; Nakashima, S.; Haisa, M. Acta, Cryst. 1978, B34, 2191-2195.
40. Roothan, C. C. J. Rev. Mod. Phys. 1951, 23, 69-89.
41. Head-Gordon, M.; Pople, J. A.; Frisch, M. J. J. Chem. Phys. Lett. 1988, 153, 503-506.
42. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
43. Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200- 1211.
44. Burke, K.; Perdew, J. P.; Wang, Y. Electronic Density Functional Theory: Recent Progress and New directions, ed. by J. F. Dobson, M. Gvignale, M. P. Das, Plenium, 1998.
45. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.
46. Dunning, T. H. J. Chem. Phys. 1989, 90, 1007-1023.
47. Gaussian 03, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J1. Erdmann, Ber. 1899, 32, 2159-2172.
48. Bader, R. F. W. Atoms in Molecules. A Quantum Theory, Claredon, Oxford (1990).
49. MORPHY 98, a program written by P. L. A. Popelier with a contribution from R. G. A. Bone, UMIST, Manchester, England (1998).
50. Melin, J.; Ayers, P.W.; Ortiz, J. V. J. Phys. Chem. A. 2007, 111, 10017, and included references there.
51. Roy, R. K. Bunshi Kozo Sogo Toronkai Koen Yoshishu, 1999, 34
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.