Molecular Dynamics Simulations of the Solubility of H2S and CO2 in Water

Authors

  • Roberto López-Rendón Universidad Autónoma Metropolitana-Iztapalapa ; University of Notre Dame
  • José Alejandre Universidad Autónoma Metropolitana-Iztapalapa

DOI:

https://doi.org/10.29356/jmcs.v52i1.1051

Keywords:

molecular dynamics simulations, acid gases, solubility

Abstract

We have performed molecular dynamics simulations at constant temperature and pressure to calculate the solubility of carbon dioxide (CO2) and hydrogen sulfide (H2S) in water. The solubility of gases in water is important in several technological problems, in particular in the petroleum industry. The calculated liquid densities as function of temperature are in good agreement with experimental data. The results at the liquid-vapor equilibrium show that at low temperatures there is an important amount of gases at the interface.

The adsorption of gases in the liquid phase decreases as temperatures increases.

Downloads

Download data is not yet available.

Author Biographies

Roberto López-Rendón, Universidad Autónoma Metropolitana-Iztapalapa ; University of Notre Dame

Departamento de Química ; Department of Computer Science and Engineering

José Alejandre, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química

References

1. Kamps, A. P.-S.; Balaban, A.; Jodecke, M.; Kuranov, G.; Smirnova, N. A.; Maurer, G. J. Eng. Chem. Res. 2001, 40, 696-706.
2. Jou, F. Y.; Mather, A. E.; Otto F. D. Can. J. Chem. Eng. 1995, 73, 140-147.
3. Kristof, T.; Liszi, J. J. Phys. Chem. B 1997, 101, 5480-5483.
4. Geiger, L. C.; Ladanyi, B. M.; and Chapin M. E. J. Chem. Phys. 1990, 93, 4533-4542.
5. Murthy, C. S.; Singer, K. Mol. Phys. 1981, 44, 135-143.
6. da Rocha S. R. P.; Johnston, K. P.; Westacott, R. E.; Rossky P. J. J. Phys. Chem. B 2001, 105, 12092-12104.
7. da Rocha S. R. P.; Johnston, K. P.; Rossky, P. J. J. Phys. Chem. B 2002, 106, 13250-13261.
8. Urukova, I.; Vorholz, J.; Maurer, G. J. Phys. Chem. B 2006, 110, 14943-14949.
9. Berendsen, H. J. C.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269-6271.
10. Harris, J.; Youg, K. H. J. Phys. Chem. 1995, 99, 12021-12024.
11. Murthy, C. S.; O’Shea, S. F.; McDonald, I. R. Mol. Phys. 1983, 50, 531-541.
12. Nath, S. K. J. Phys. Chem. B 2003, 107, 9498-9504.
13. Tuckerman, M. E.; Alejandre, J.; López-Rendón, R.; Jochim, A. L.; Martyna, G. J. J. Phys. A: Math. Gen. 2006, 39, 5629-5651.
14. Martyna, G. J.; Tuckerman, M. E.; Klein, M. L. J. Chem. Phys. 1992, 97, 2635-2643.
15. Martyna, G. J.; Tobias, D. J.; Klein, M. L. J. Chem. Phys 1994, 101, 4179-4189.
16. Karasawa, N.; Goddard, III W. A. J. Phys. Chem. 1989, 93, 7320-7327.
17. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.;Pedersen, L. G. J. Chem. Phys 1995, 103, 8577-8593.
18. López-Lemus, J; Alejandre, J. Mol. Phys. 2002, 100, 2983-2992.
19. Lemmon, E. W.; McLinden, M. O.; Friend, D. G. Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, NIST Standard Reference Database , Eds. P.J. Linstrom and W.G. Mallard, http://webbook.nist.gov, 2005
20. Silkenbaumer, D.; Rumpf, B.; Lichtenthaler, R. N. Ind. Eng. Chem. Res. 1998, 37, 3133-3141.
21. Kuranov, G.; Rumpf, B.; Smirnova, N. A.; Maurer, G. Ind. Eng. Chem. Res. 1996, 35, 1959-1966.

Downloads

Published

2019-07-29