Folded Conformations of Maitotoxin

Authors

  • Myrna H. Matus Universidad Autónoma Metropolitana-Iztapalapa ; The University of Alabama
  • Laura Escobar Universidad Nacional Autónoma de México
  • Marcelo Galván Universidad Autónoma Metropolitana-Iztapalapa

DOI:

https://doi.org/10.29356/jmcs.v52i1.1049

Keywords:

maitotoxin, conformational analysis, hydrogen bonds

Abstract

We used classical molecular mechanics and dynamics simulations to sample the conformational space of maitotoxin, the largest and most lethal natural product. Among the set of minima obtained, the five conformers with the lowest energies show folded structures with an intramolecular hole. We found the folding mainly due to hydrogen bonds that fasten the mobile zones of the molecule. The hole on each MTX conformer is big enough to interact with ions, such as Ca2+ or Na+, which could be involved in its toxic effects observed on all cell types.

Downloads

Download data is not yet available.

Author Biographies

Myrna H. Matus, Universidad Autónoma Metropolitana-Iztapalapa ; The University of Alabama

Departamento de Química ; Department of Chemistry

Laura Escobar, Universidad Nacional Autónoma de México

Departamento de Fisiología, Facultad de Medicina

Marcelo Galván, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química

References

1. Anderson, D.M. in Red Tides: Biology, Environmental Science and Toxicology; Okaichi, T., Anderson, D.M., Nemoto, T., Eds.; Elsevier: New York, 1994.
2. Murata, M.; Naoki, H.; Matsumaga, S.; Satake, M.; Yasumoto, T. J. Am. Chem. Soc. 1994, 116, 7098-7107.
3. Yasumoto, T.; Bagnis, R.; Vernoux, J.P. Bull. Jpn. Soc. Sci. Fish. 1976, 42, 359-365.
4. Zheng, W.; DeMaittei, J.A.; Wu, J.; Duan, J.W.; Cook, L.R.; Oinuma, H.; Kishi, Y. J. Am. Chem. Soc. 1996, 118, 7946-7968.
5. Kishi, Y. Pure and Appl. Chem. 1998, 70, 339-344.
6. Gallimore, A.R.; Spencer, J.B. Angew. Chem. Int. Ed. Engl. 2006, 45, 4406–4413.
7. Murata, M.; Yasumoto, T. Nat. Prod. Rep. 2000, 17, 293-314.
8. Yasumoto, T. Chem. Rec. 2001, 1, 228-242.
9. Nicolaou, K.C.; Frederick, M.O. Angew. Chem. Int. Ed. 2007, 46, 5278-5282.
10. Igarashi, T.; Aritake, S.; Yasumoto, T. Nat. Toxins 1999, 7, 71-79.
11. Gusovsky, F.; Daly, J.W. Biochem. Pharmacol. 1990, 39, 1633-1639.
12. Weber, W.M.; Popp, C.; Clauss, W.; Van Driessche, W. Eur. J. Physiol. 2000, 439, 363-369.
13. Diakov, A.; Koch, J.-P.; Ducoudret, O.; Müller-Berger, S.; Frönter, E. Eur. J. Physiol. 2001, 442, 700-708.
14. de la Rosa, L.A.; Alfonso, A.; Vilariño, N.; Vieytes, M.R.; Yasumoto, T.; Botana, L.M. Cell. Signalling 2001, 13, 711-716.
15. Martínez-François, J.R.; Morales-Tlalpan, V.; Vaca, L. J. Physiol. 2002, 538, 79-86.
16. Morales-Tlalpan, V.; Vaca, L. Toxicon 2002, 40, 493-500.
17. Treviño, C.L.; de la Vega-Beltrán, J.L.; Nishigaki, T.; Felix, R.; Darszon, A. J. Cell. Physiol. 2006, 206, 449-456.
18. Takahashi, M.; Ohizumi, Y.; Yasumoto, T. J. Biol. Chem. 1982, 257, 7287–7289.
19. Escobar, L.I.; Salvador, C.; Martínez, M.; Vaca, L. Neurobiology (Bp) 1998, 6, 59–74.
20. Yuhi, T., Wada, A.; Yamamoto, R.; Urabe, M.; Niina, H; Izumi, F.; Yanagita, T. Naunyn Schmiedebergs Arch. Pharmacol. 1994, 350, 209–212.
21. Baden, D.G. Faseb J. 1989, 3, 1807–1817.
22. Catterall, W.A.; Trainer, V.; Baden, D.G. Bull. Soc. Pathol. Exot. 1992, 85 (5 Pt 2), 481–485.
23. Scheiner-Bobis, G.; Heringdorf, D.M.Z.; Christ, M.; Habermann, E. Mol. Pharmacol. 1994, 45, 1132–1136.
24. Boyd, D.B.; Lipkowitz, K.B. J. Chem. Educ. 1982, 59, 269-274.
25. Rappé, A.K.; Casewit, C.J. Molecular Mechanics Across Chemistry, University Science Books, 1997.
26. Shi, S.; Yan, L.; Yang, Y.; Fisher-Shaulsky, J.; Thacher, T. J. Comp. Chem. 2003, 24, 1059-1076.
27. InsightII, Discover User Guide, Part 1, Molecular Simulations, San Diego, CA. 1996.
28. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Science 1983, 220, 671-680.

Downloads

Published

2019-07-29