Mechanism and Kinetics of the OH• Radical Reaction with Formaldehyde Bound to an Si(OH)4 Monomer

Authors

  • Cristina Iuga Universidad Autónoma Metropolitana, Iztapalapa
  • Rodolfo Esquivel Olea Universidad Autónoma Metropolitana, Iztapalapa
  • Annik Annik Vivier-Bunge Universidad Autónoma Metropolitana, Iztapalapa

DOI:

https://doi.org/10.29356/jmcs.v52i1.1044

Keywords:

mineral aerosols, radical reactions, silica surface model,, formaldehyde, OH radicals, rate constants

Abstract

In this work, quantum chemical methods are used to study the reaction of OH• radicals with formaldehyde bound to the Si(OH)4 monomer, as a model for silica mineral aerosols. The potential energy surfaces for the formaldehyde interaction with the surface model have been carefully spanned, and minima and maxima were evaluated. Both the H-abstraction and OH-addition paths are shown to be complex reactions, which involve the formation of a reactant complex in the entrance channel and a product complex in the exit channel. In the main reaction channel, formaldehyde binds to the silanol groups and then reacts with OH free radicals to form a water molecule and a bound formyl radical. We show that the rate constant for the Habstraction reaction is an order of magnitude smaller when formaldehyde is bound to Si(OH)4 than in the gas phase, while the rate constant for the addition reaction is still about five orders of magnitude smaller. Thus, the branching ratio between abstraction and addition is not significantly altered in the presence of the silicate surface model.

 

 

Downloads

Download data is not yet available.

Author Biographies

Cristina Iuga, Universidad Autónoma Metropolitana, Iztapalapa

Departamento de Química

Rodolfo Esquivel Olea, Universidad Autónoma Metropolitana, Iztapalapa

Departamento de Química

Annik Annik Vivier-Bunge, Universidad Autónoma Metropolitana, Iztapalapa

Departamento de Química

References

1. Usher, C. R.; Michel, A. E.; Grassian, V. H. Chem. Rev. 2003, 103, 4883-4939.
2. Dentener, F. J.; Carmichael G. R.; Zhang Y. J. Geophys. Res. 1996, 101, 22869–22889.
3. Bian, H. S.; Zender, C. S. J. Geophys. Res. 2003, 108, 4672.
4. Ravishankara, A. R. Science 1997, 276, 1052-1058.
5. S. Oh; J. M. Andino Atm. Environ. 2002, 36, 149-156.
6. M. Sørensen; M. D. Hurley; T. J. Wallington; T. S. Dibble; O. J. Nielsen. Atm. Environ. 2002, 36, 5947-5952.
7. Carlos-Cuellar, S.; Li, P.; Christensen, A. P.; Krueger, B. J.; Burrichter, C.; Grassian, V. H. J. Phys. Chem. A 2003, 107, 4250-4261.
8. Atkinson, R. J. Phys. Chem. Ref. Data 1994, Monograph 2, 1.
9. Tyndall, G. S.; Orlando, J. J.; Wallington, T.; Hurley, M. D.; Goto, M.; Kawasaki, M. Phys. Chem. Chem. Phys. 2002, 4, 2189-2193.
10. Vandenberk, S.; Peeters, J. J. Photochem. Photobiol. A 2003, 157, 269-274.
11. Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Rossi, M. J.; Troe, J. J. Phys. Chem. Ref. Data 1997, 26, 521-1011.
12. DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J., JPL-PUBL-92-20; NAS 1.26192795; NASA-CR- 192795.
13 Alvarez-Idaboy, J. R.; Mora-Diez, N.; Boyd, R. J.; Vivier-Bunge, A. J. Am. Chem. Soc. 2001, 123, 2018-2024.
14 Aloisio, S.; Francisco, J. S. J. Phys. Chem. A 2000, 104, 3211-3224.
15 Gutmann, V. In The Donor-Acceptor Approach to Molecular Interactions; Plenum Press, New York, 1978.
16 Gutmann, V.; Resch, G.; Linert, W. Coord. Chem. Rev. 1982, 43, 133-164.
17. Bronnimann. C. E.; Zeigler, R. C.; Maciel, G. E. J. Am. Chem. Soc. 1988, 110, 2023-2026.
18. Morrow. B. A.; Gay, I. D. J. Phys. Chem. 1988, 92, 5569-5571.
19. Legrand, A. P.; Hommel, H.; Taibi, H.; Miquel, J. L.; Tougne, P. Colloid Surf. 1990, 45, 391-411.
20. Leonardelli. S.; Facchini, L.; Fretigny, C.; Tougne. P.; Legrand, A. P. J. Am. Chem. Soc. 1992, 114, 6412-6418.
21. Hoffman, P.; Knozinger, E. Surface Sci. 1987, 188, 181-198.
22. McFarlan, A. J.; Morrow, B. A. J. Phys. Chem. 1991, 95, 5388-5390.
23. Knozinger, H. In The hydrogen bond, Vol. 111, Schuster, P.; Zundel, G.; Sandorfy, C., Eds., North-Holland: Amsterdam 1976; 1263, and references therein.
24. Her, R. K. In The chemistry of silica; Wiley-Interscience: New York 1979; Chapter 6.
25. Kiselev, A. V.; Lygin, V. I. In lnfrared spectra of surface compounds; Wiley: New York, 1975.
26. Heanry, P. J.; Prewitt, C. T.; Gibbs, G. V. In Silica, Physical Behavior, Geochemistry and Materials Applications; Ribbe, P. H., Ed.; Reviews in Mineralogy, Vol. 29; Mineralogical Society of America: Washington, D.C., 1994; 331.
27 Sauer, J.; Ugliengo, P.; Garrone, E.; Saunders, V.R. Chem. Rev. 1994, 94, 2095-2160.
28. Xin, L.; Qianer, Z.; Lin, M. C. Phys. Chem. Chem. Phys. 2001, 3, 2156-2161.
29.Sauer, J.; Ugliengo, P.; Garrone, E.; Saunders, V. R. Chem. Rev. 1994, 94, 2095-2160.
30. Ugliengo, P.; Saunders, V. R.; Garrone, E. Chem. Phys. Lett. 1990, 169, 501-508.
31. Busca, G.; Lamotte, J.; Lavalley, J. C.; Lorenzelli, V. J. Am. Chem. Soc. 1987, 109, 5197-5202.
32. Sauer, J.; Schrader, K. P. Phys. Chem. Leipzig 1985, 266, 379.
33. Pelmenschikov, A. G.; Morosi, G.; Gamba, A. J. Phys. Chem. 1992, 96,7422-7424.
34. Sauer, J. J. Phys. Chem. 1987, 91, 2315-2319.
35. Ugliengo, P.; Garrone, E., J. Mol. Catal. 1989, 54, 439-443.
36. Ugliengo, P.; Saunders, V. R.; Garrone, E. J. Phys. Chem. 1989, 93, 521.
37. Garrone, E.; Ugliengo, P. Mater Chem. Phys. 1991, 29, 287-296.
38 Civalleri, B.; Garrone, E.; Ugliengo, P. Chem. Phys. Lett. 1998, 294, 103-108.
39 Pereira, J. C. G.; Catlow, C. R. A.; Price, G. D. J. Phys. Chem. A 1999, 103, 3268-3284.
40. Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377.
41. Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Frisch, M. J.; Frisch, A. GAUSSIAN 98 User’s Reference; Gaussian Inc.: Pittsburgh, PA, 1998.
42. Gaussian 03 (Revision A.1), Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J., Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc., Pittsburgh, PA, 2004.
43. Galano, A.; Alvarez-Idaboy, J. R.; Ruiz-Santoyo M. E.; Vivier- Bunge, A. J. Phys. Chem. A 2002, 106, 9520-9528.
44. Galano, A.; Alvarez-Idaboy, J. R.; Bravo-Pérez G.; Ruiz-Santoyo, M. E., Phys. Chem. Chem. Phys. 2002, 4, 4648–4662.
45. Mayer, I. Int. J. Quantum. Chem. 1983, 23, 341-363.
46. Mayer, I. J. Phys. Chem. 1996, 100, 6332-6335.
47. Frisch, M. J.; Del Bene, J. E.; Binkley, J. S.; Schaefer III, H. F.; J. Chem. Phys. 1986, 84, 2279-2289.
48. Schwenke, D. W.; Truhlar, D. G. J. Chem. Phys. 1985, 82, 2418-2426.
49 T. H. Dunning, Jr. J. Phys. Chem. A 2000, 104, 9062-9080..
50. Eyring, H., J. Chem. Phys., 1935, 3, 107-115.
51. Truhlar, D. G.; Hase W. L.; Hynes, J. T., J. Phys. Chem., 1983, 87, 2264-2267.
52. Duncan, W. T.; Bell, R. L.; Truong, T. N., J. Comput. Chem. 1998, 19, 1039-1052.
53. Singleton, D. L.; Cvetanovic, R. J., J. Am. Chem. Soc. 1976, 98, 6812-6819.
54. Pilling, M. J.; Seakins, P. W. Reaction Kinetics, Oxford University Press, New York, 1996.
55. Laidler, K. J., Chemical Kinetics, ed. Harper Collins Publishers, 1987, p. 98.
56. Jacox, M. E. Vibrational and Electronic Energy Levels of Polyatomic Transient Molecules, Vol. 69, NIST: Gaithersburg, MD, 1998, 945.
57 The NIST Chemical Kinetics Data Base, NIST Standard Reference Database; U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology: Gaithersburg, MD, 17-2Q98.
58. Guggenheim, S.; Chang, Y.-H.; Koster van Gross, A.F. American Mineralogist, 1987, 72, 537-550.
59. Lee, J. H.; Guggenheim S. American Mineralogist, 1981, 66, 350-357.
60. Knozinger, H. In The Hydrogen Bond; Vol III, Schuster, P., Zundel, G., Sandorfy, C., Eds.; North-Holland: Amsterdam, 1976, 1263; and reference therein.
61. Curthoys, G.; Davydov, V. Ya; Kiselev, A. V.; Kiselev, S. A.; Kuznetsov, B. V. J. Colloid Interface Sci. 1974, 48, 58-72.
62. Truong, T. N.; Truhlar, D. G. J. Chem. Phys. 1990, 93, 1761-1769.
63. Tiee, J. J.; Wampler, F. B.; Oldenborg, R. C.; Rice, W. W. Chem. Phys. Lett. 1981, 82, 80-84.

Downloads

Published

2019-07-29