The Role of the Linearity on the Hydrogen Bond in the Formamide Dimer: a BLYP, B3LYP, and MP2 Study


  • José-Zeferino Ramírez Universidad Autónoma Metropolitana-Iztapalapa
  • Rubicelia Vargas Universidad Autónoma Metropolitana-Iztapalapa
  • Jorge Garza Universidad Autónoma Metropolitana-Iztapalapa



hydrogen bond, DFT, MP2, Theoretical approach, basis set functions, formamide dimer


Quantum chemistry methods have been proven to be a very useful tool to study chemical systems stabilized by hydrogen bonds. The two theoretical methodologies most frequently used are the Density Functional Theory (DFT), in its Kohn-Sham version, and the second order Møller-Plesset Perturbation Theory (MP2). Lately, many studies have been focused on weak hydrogen bonds (binding energies < 4 kcal/mol) because such contacts might have a relevant role in the molecular ensemble. However, there are some results about this type of interactions where the Kohn-Sham model and MP2 give different answers. By testing two exchange-correlation functionals, BLYP and B3LYP, we are proposing in this paper that such a discrepancy will happen mainly when the hydrogen bond is far from the linearity; we present this hypothesis on the formamide dimer as an example. We found that, even when this dimer exhibits two hydrogen bonds (N-H...O) with moderate strength, the MP2 and the two exchange-correlation functionals, considered in this work, predict different potential energy surfaces when the geometrical parameters of the hydrogen bond are distorted and a limited basis set is used.


, .


Download data is not yet available.

Author Biographies

José-Zeferino Ramírez, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química, División de Ciencias Básicas e Ingeniería

Rubicelia Vargas, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química, División de Ciencias Básicas e Ingeniería

Jorge Garza, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química, División de Ciencias Básicas e Ingeniería


1. Jeffrey, G. A. An introduction to hydrogen bonding, Oxford University Press, New York, 1997.
2. Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry: Principles of Structure and Reactivity, HarperCollins College Publishers, New York, 1993, 300-310.
3. Feller, D. J. Chem. Phys. 1992, 96, 6104-6114.
4. Jacoby, M. Chem. Eng. News 2002, 80, 29.
5. Solomons, T. W. G.; Fryhle, C. B. Organic Chemistry, John Wiley & Sons, New York, 2000, 1205-1212.
6. Desiraju, G. R.; Steiner, T. The weak hydrogen bond in structural chemistry and biology. International Union of Crystallography, Monographs on Crystallography, Oxford Science Publications, New York, 1999.
7. (a) Steiner, T. Angew. Int. Ed. 2002, 41, 48-76. And references therein. (b) Ciunik, Z.; Drabent, K.; Szterenberg, L. J. Mol. Struct. 2002, 641, 175-182. (c) Louit, G.; Hocquet, A.; Ghomi, M. Phys. Chem. Chem. Phys. 2002, 4, 3843-3848. (d) Ruiz, T. P.; Fernandez-Gómez, M.; González, J. J. L.; Koziol, A. E.; Roldán, J. M. G. J. Mol. Struct. 2004, 707, 33-46. (e) Munshi, P.; Row, T. N. G. J. Phys. Chem. A 2005, 109, 659-672. (f) Garza, J.; Ramírez, J.-Z.; Vargas, R. J. Phys. Chem. A, 2005, 109, 643-651. (g) Navarrete-López, A. M.; Garza, J.; Vargas, R. J. Phys. Chem. A. 2007, 111, 11147-11152.
8. Vargas, R.; Garza, J.; Dixon, D. A.; Hay, B. P. J. Am. Chem. Soc. 2000, 122, 4750-4755.
9. (a) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618-622 (b) Szabo, A.; Ostlund, N. S., Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, 1st ed. Revised, McGraw-Hill, New York, 1989.
10. Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules, International series of monographs on chemistry No.16, 1st ed., Breslow, R., Goodenough, J. B., Halpern, J., Rowlinson, J. S., Eds., Oxford University Press, New York, 1989.
11. (a) Slater, J. C. Quantum Theory of Molecular and Solids, Vol. 4, McGraw-Hill, New York, 1974. (b) Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200-1211.
12. Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Can. J. Chem. 1992, 70, 560-571.
13. Dunning, T. H. Jr. J. Chem. Phys. 1989, 90, 1007-1023.
14. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (b) Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377.
15. Ramírez, J.-Z.; Vargas, R.; Garza, J.; Hay, B. P. J. Chem. Theory and Comput. 2006, 2, 1510-1519.
16. Gómez, M.; González, I.; González, F. J.; Vargas, R.; Garza, J. Electrochem. Comm. 2003, 5, 12-15.
17. (a) Garza, J.; Vargas, R.; Gómez, M.; González, I.; González, F. J. J. Phys. Chem. A 2003, 107, 11161-11168. (b) Cárdenas-Jirón, G. I.; Masunov, A.; Dannenberg, J. J. J. Phys. Chem. A 1999, 103, 7042-7046. (c) van de Bovenkamp, J.; Matxain, J. M.; van Duijneveldet, F. B.; Steiner, T. J. Phys. Chem. A 1999, 103, 2784-2792.
18. Vargas, R.; Garza, J.; Friesner, R. A.; Stern, H.; Hay, B. P.; Dixon, D. A. J. Phys. Chem. A 2001, 105, 4963-4968.
19. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650-654.
20. (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3100. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
21. (a) Aprà, E.; Windus, T. L.; Straatsma, T. P.; Bylaska, E. J.; de Jong, W.; Hirata, S.; Valiev, M.; Hackler, M.; Pollack, L.; Kowalski, K.; Harrison, R.; Dupuis, M.; Smith, D. M. A; Nieplocha, J.; Tipparaju V.; Krishnan, M.; Auer, A.A.; Brown, E.; Cisneros, G.; Fann, G.; Fruchtl, H.; Garza, J.; Hirao, K.;Kendall, R.; Nichols, J.; Tsemekhman, K.; Wolinski, K.; Anchell, J.; Bernholdt, D.; Borowski, P.; Clark, T.; Clerc, D.; Dachsel, H.; Deegan, M.; Dyall, K.; Elwood, D.; Glendening, E.; Gutowski, M.; Hess, A.; Jaffe, J.; Johnson, B.; Ju, J.; Kobayashi, R.; Kutteh, R.; Lin, Z.; Littlefield, R.; Long, X.; Meng, B.; Nakajima, T.; Niu, S.; Rosing, M.; Sandrone, G.; Stave, M.; Taylor, H.; Thomas, G.;
van Lenthe, J.; Wong, A.; Zhang, Z. NWChem, A Computational Chemistry Package for Parallel Computers, Version 4.5, Pacific Northwest National Laboratory, Richland, Washington 99352-0999, USA, 2003. (b) Kendall, R. A.; Aprà, E.; Bernholdt, D. E.; Bylaska, E. J.; Dupuis, M.; Fann, G. I.; Harrison, R. J.; Ju,J.; Nichols, J. A.; Nieplocha, J.; Straatsma, T. P.; Windus, T. L.; Wong, A. T. Computer Phys.Comm. 2000, 128, 260-283.
22. Neuheuser, T.; Hess, B. A.; Reutel, C.;Weber, R. J. Phys. Chem. 1994, 98, 6459-6467
23. Ireta, J.; Neugebauer, J.; Scheffler, M. J. Phys. Chem. A 2004, 108, 5692-5698.
24. Vargas, R.; Garza, J.; Hay, B. P.; Dixon, D. J. Phys. Chem. A 2002, 106, 3213-3218.
25. Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 6908-6918.