A Search for Structural Alternatives of RNA
DOI:
https://doi.org/10.29356/jmcs.v53i1.1014Keywords:
Nucleic acids, structural alternatives, RNA, DNA, oligonucleotides, oligopeptides, pairing properties, canonical nucleobases, pKa, ionizationAbstract
This account describes a search for potentially primordial informational oligomers; the work is the direct outcome of the research program that was initiated by the Eschenmoser group —at ETH Zürich about 20 years ago and was continued at The Scripps Research Institute since 1996— in order to understand the chemical basis on which nucleic acids were chosen by nature as the molecular foundation of its genetic apparatus. The investigation began with the study of the base-pairing properties of structural alternatives of nucleic acids —constructed from different sugars (hexo- & pentopyranoses and tetrofuranose) retaining the canonical nucleobases and phosphates. The outcome from these studies led to the conclusion that Watson-Crick type base-pairing is not unique to RNA/DNA, and that it can be compatible with a wide variety of backbone edifice. This provided the motivation to map the landscape of potentially primordial informational oligomer systems that may contain backbones, recognition elements and linker groups structurally quite different from those known so far. The oligomer systems chosen for study are, conceptually, deemed to be (a) potentially primordial (based on the nature of the starting materials and reaction conditions considered to be prebiotically realistic) and (b) informational (based on their ability to adopt a repetitive conformation such that the information encoded by the recognition elements can be transmitted intermolecularly). Though such studies suggest the possibility of finding informational systems that could lay claim as functional ancestors of RNA —they are more likely to generate results that provide the opportunity to assess the structural and functional uniqueness of nature’s choice. The experimental investigation described here deals with the base-pairing properties of oligomer systems derived from 2,4-disubsituted -triazines, -5-aminopyrimdines and -6-carboxy pyrimidines as recognition elements that are tagged to oligo-dipeptide backbones via different linker groups. The results from the inter- and intra-system cross-pairing studies reveal that there is, on first approximation, a direct correlation between the magnitude of the difference in DpKa of the recognition elements and their base-pairing strength —smaller the Dpka between the base-pairing partners, weaker is the base-pairing strength (in aqueous medium at near neutral pH). These results exemplify the inherent singularity of the canonical nucleobases— their ability to remain un-ionized under physiological conditions based on their constitution – emphasizing the relationship between their physicochemical properties and their functional competence in connection with their role in informational base-pairing.
Downloads
References
2. A. Eschenmoser, M. Dobler, Helv. Chim. Acta 1992, 75, 218-259.
3. A. Eschenmoser, Origins Life Evol. Biosphere, 1994, 24, 389423.
4. (a) M. Böhringer, H.-J. Roth, J. Hunziker, M. Göbel, R. Krishnan, A. Giger, B. Schweizer, J. Schreiber, C. Leumann, A. Eschenmoser, Helv. Chim. Acta 1992, 75, 1416-1477. (b) J. Hunziker, H.-J. Roth, M. Böhringer, A. Giger, U. Diederichsen, M. Göbel, R. Krishnan, B. Jaun, C. Leumann, A. Eschenmoser, Helv. Chim. Acta 1993, 76, 259-352. (c) G. Otting, M. Billeter, K. Wüthrich, H.-J. Roth, C. Leumann, A. Eschenmoser, Helv. Chim. Acta 1993, 76, 2701-2756. (d) K. Groebke, J. Hunziker, W. Fraser, L. Peng, U. Diederichsen, K. Zimmermann, A. Holzner, C. Leumann, A. Eschenmoser, Helv. Chim. Acta 1998, 81, 375-474.
5. (a) S. Pitsch, S. Wendeborn, B. Jaun, A. Eschenmoser, Helv. Chim. Acta 1993, 76, 2161-2183. (b) S. Pitsch, R. Krishnamurthy, M. Bolli, S. Wendeborn, A. Holzner, M. Minton, C. Lesueur, I. Schlönvogt, B. Jaun, A. Eschenmoser, Helv. Chim. Acta 1995, 78, 1621-1635. (c) M. Beier, F. Reck, T. Wagner, R. Krishnamurthy, A. Eschenmoser, Science 1999, 283, 699-703. (d) F. Reck, H. Wippo, R. Kudick, R. Krishnamurthy, A. Eschenmoser, A. Helv. Chim. Acta. 2001, 84, 1778-1804. (e) T. Wagner, H. K. Huynh, R. Krishnamurthy, A. Eschenmoser, A. Helv. Chim. Acta. 2002, 85, 399-416. (f) M. O. Ebert, A. Luther H. K. Huynh, R. Krishnamurthy, A. Eschenmoser, B. Jaun, Helv. Chim .Acta. 2002, 85, 4055-4073. (g) O. Jungmann, M. Beier, A. Luther, H. K. Huynh, M. O. Ebert, B. Jaun, R. Krishnamurthy, A. Eschenmoser. Helv. Chim. Acta. 2003, 86, 1259-1308. (h) S. Pitsch, S. Wendeborn, R. Krishnamurthy, A. Holzner, M. Minton, M. Bolli, C. Miculca, N. Windhab, R. Micura, M. Stanek, B. Jaun, A. Eschenmoser. Helv. Chim. Acta. 2003, 86, 4270-4363.
6. (a) K.-U. Schöning, P. Scholz, S. Guntha, X. Wu, R. Krishnamurthy, A. Eschenmoser. Science 2000, 290, 1347-1351. (b) X. Wu, G. Delgado, R. Krishnamurthy, A. Eschenmoser, Org. Lett. 2002, 4, 1283-1286. (c) C.J. Wilds, Z. Wawrzak, R. Krishnamurthy, A. Eschenmoser, M. Egli, J. Am. Chem. Soc. 2002, 124, 13716-13721. (d) K.-U. Schöning, P. Scholz, X. Wu,
S. Guntha, G. Delgado, R. Krishnamurthy, A. Eschenmoser. Helv. Chim. Acta. 2002, 85, 4111-4153.
7. P. E. Nielsen, Acc. Chem. Res. 1999, 32, 624-630.
8. (a) P. Herdwijn, Liebigs Ann. Chem. 1996, 9, 1337-1348. (b) B. Hyrup, P. Nielsen, Bioorg. Chem. Med. Chem. Lett. 1996, 4, 5-13. (c) J. Micklefield, Current Med. Chem. 2001, 8, 1157-1179.
9. A. Eschenmoser, Origins Life Evol. Biosphere, 2004, 34, 277306.
10. A. Eschenmoser, Chimia, 2005, 59, 836-850.
11. (a) R. A. Sanchez, L. E. Orgel, J Mol. Biol. 1970, 47, 531-543. (b) W. D. Fuller, R. A. Sanchez, L. E. Orgel, J. Mol. Evol. 1972, 1, 249-257. (c) G. Zubay, T. Mui, Origins Life Evol. Biosphere 2001, 31, 87-102.
12. (a) Z. Wang, H. K. Huynh, B. Han, R. Krishnamurthy, A. Eschenmoser. Org. Lett. 2003, 5, 2067-2070. (b) B. Han, Z. Wang, B. Jaun, R. Krishnamurthy, A. Eschenmoser. Org. Lett. 2003, 5, 2071-2074. (c) B. Han, B. Jaun, R. Krishnamurthy, A. Eschenmoser. Org. Lett. 2004, 6, 3691-3694.
13. (a) C. G. Overberger, F. W. Michelotti, P. M. Carabateas, J. Am. Chem. Soc., 1957, 79, 941-944. (b) H. Bredereck, F. Effenberger, A. Hofmann, M. Hajek, Angew. Chem Int. ed. Eng. (review), 1963, 2, 655-659. (c) J. K. Simons, M. R. Saxton, Organic Synthesis, Wiley, New York, 1963, Collect. Vol. IV, pp78-79. (d) H. Bredereck, F. Effenberger, A. Hoffmann, Ber., 1964, 97, 61-63. (e) E. Kuwano, E. Taniguchi, K. Maekawa, Agric. Biol. Chem., 1973, 37, 423-430. (f) R. Deans, G. Cooke, V. M. Rotello, J. Org. Chem., 1997, 62, 836-839. (g) Z. Brozozowski, F. Saczewski, M. Gdaniec, Eur. J. Med. Chem., 2000, 35, 1053-1064. (h) A. D-Ortiz, J. Elguero, C. F-Foces, A. d-l. Hoz, A. Moreno, M. d-C. Mateo, A. S-Migallon, G. Valiente. New. J. Chem., 2004, 28, 952958.
14. (a) J. P. Ferris, P. C. Joshi, Science, 1978, 201, 361-362. (b) A. B. Voet, A. W. Schwartz, Origins Life Evol. Biosphere, 1982, 12, 45-49. (c) S. Miyakawa, H. J. Cleaves, S. L. Miller, Origins Life Evol. Biosphere, 2002, 32, 209-218.
15. J. P. Ferris, P.C. Joshi, E. H. Edelson, J. G. Lawless, J. Mol. Evol. 1978, 11, 293–311.
16. (a) N. K. Sharma, K. N. Ganesh, Chem. Commun. 2003, 24842485. (b) T. H. S. Tan, D. T. Hickman, J. Morral, I. G. Beadham, J. Micklefield, Chem. Commun. 2004, 516-517; (c) P. von Matt, A. De Mesmaeker, U. Pieles, W. Zürcher, K-H Altmann, Tetrahedron Lett. 1999, 40, 2899-2902. (d) T. Vilaivan, G. Lowe, J. Am. Chem. Soc. 2002, 124, 9326-9327. (e) R. A. Goodnow, S. Tam, D. L. Pruess, W. W. McComas, Tetrahedron Lett. 1997, 38, 3199-3202. (f) M. Kuwahara, M. Arimitsu, M. Shigeyasu, N. Saeki, M. Sisido, J. Am. Chem. Soc. 2001, 123, 4653-4658. (g) A. Lenzi, G. Reginato, M. Taddei, E. Trifilieff, Tetrahedron Lett. 1995, 36, 1717-1718. (h) U. Diederichsen, Angew. Chem. Int. Ed. 1996, 35, 445-448. (i) A. M. Brückner, H. W. Schmitt, U. Diederichsen, Helv. Chim. Acta, 2002, 85, 3855-3866. (j) M. Fujii, K. Yoshida, J. Hidaka, T. Ohtsu, Chem. Commun. 1998, 717-718. (k) Y. Huang, S. Dey, X. Zhang, F. Sönnichsen, P. Garner, J. Am. Chem. Soc. 2004,126, 4626-4640. (l) H. Umemiya, K. Komatsu, T. Yamzaki, H. Kagechika, K. Shudo, Y. Hashimoto, Nucl. Acid, Symp. Ser. 1995, 34, 37-38.
17. 2,3-Diaminoacids have been identified in Murchison meteorite (U. J. Meierhenrich, G. M. Munoz Caro, J. H. Bredehöft, E. K. Jessberger, W. H.-P. Thiemann, Proc. Natl. Acad. Sci. 2004, 101, 9182-9186), in laboratory experiments simulating chemistry of interstellar medium (G. M. Munoz Caro, U.J. Meierhenrich, W. A. Schutte, B. Barbier, A. Arcones Segovia, H. Rosenbauer, W. H.-P. Thiemann, A. Brack, J. M. Greenberg, Nature, 2002, 416, 403-406) and as a product of hydrolysis of NH4CN solutions (K. E. Nelson, M. Levy, S. L. Miller, Proc. Natl. Acad. Sci. 2000, 97, 3868-3871).
18. (a) G. K. Mittapalli, K. R. Reddy, H. Xiong, O. Munoz, B. Han, F. De Riccardis, R. Krishnamurthy, A. Eschenmoser, Angew. Chem. Int. Ed. 2007, 46, 2470-2477. (b) G. K. Mittapalli, Y. M. Osornio, M. A. Guerrero, K. R. Reddy, R. Krishnamurthy, A. Eschenmoser, Angew. Chem. Int. Ed. 2007, 46, 2478-2484.
19. (a) J. J. Fox, N. Yung, I. Wempen, Biochim. et Biophys. Acta, 1957, 23, 295-305. (b) J. Jonas, J. Gut, Collect. Czech. Chem. Commun. 1962, 27, 716-723. (c) M. S. Masoud, M. Abd El Zaher Mostafa, R. H. Ahmed, N.H. Abd El Moneim, Molecules, 2003, 8, 430-438.
20. It is not excluded that there may be other reasons, e.g. conformational restrictions, that are also responsible for the weak pairing
of 2,4-dioxo-6-carboxypyrimidine tagged oligopeptides. We are currently checking this possibility by making the complementary 2,4-diamino-6-carboxypyrimidine tagged oligopeptide (which has a pKa of about 4.6, and is expected to show base-pairing with thymine/uracil containing oligomers).
21. F. H. Westheimer, Science 1987, 235, (4793), 1173-1178.
22. (a) P.O.P. Ts’o, Ann. N. Y. Acad. Sci. 1969, 153, 785-804. (b) W. Saenger, “Principles of Nucleic Acid Structure”, 1984, ed. C. R. Cantor, Springer Verlag, New York, N.Y. (c) M. Roitzsch, B. Lippert, J. Am. Chem. Soc. 2004, 126, 2421-2424.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.