Sesquiterpene Lactones, Acyl Phenyl Propanoids and Other Constituents from Schkuhria pinnata var. wislizeni. Antioxidant Evaluation

Authors

  • Alejandra León Universidad Nacional Autónoma de México
  • Blanca M. Reyes Universidad Nacional Autónoma de México
  • María Isabel Chávez Universidad Nacional Autónoma de México
  • Rubén A. Toscano Universidad Nacional Autónoma de México
  • Guillermo Delgado Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.29356/jmcs.v53i3.1002

Keywords:

Asteraceae, Schkuhria pinnata var, wislizeni, 1,13dehydroeriolin, dischkuhriolin, 14-O-schkuhridin B, flavonoids, acyl phenyl propane, antioxidant activity

Abstract

Chemical investigation of aerial parts of Schkuhria pinnata var wislizeni (Asteraceae) allowed the characterization of the sesquiterpene lactones 1, 2 and 5, the flavonoids 3 and 4, and the acyl phenyl propanoids 10 and 11. Structure 2, named dischkuhriolin, was confirmed as a Diels Alder adduct of 1 as dienophile and a guaianolide as diene. Spectroscopic analysis of 5 and its diacetyl derivative allowed the structural correction of compounds previously reported from Schkuhria. 2, 10 and 11 are new natural compounds. Biological assays indicated that the mixture 10 + 11 showed antioxidant activity expressed as inhibition of AAPH-induced damage in rat pancreatic homogenate.

Downloads

Download data is not yet available.

Author Biographies

Alejandra León, Universidad Nacional Autónoma de México

Instituto de Química

Blanca M. Reyes, Universidad Nacional Autónoma de México

Instituto de Química

María Isabel Chávez, Universidad Nacional Autónoma de México

Instituto de Química

Rubén A. Toscano, Universidad Nacional Autónoma de México

Instituto de Química

Guillermo Delgado, Universidad Nacional Autónoma de México

Instituto de Química

References

1. Heiser, Ch. B. Ann. Miss. Bot. Gar. 1945, 32, 265-277.
2. Rydberg, P. A. North American Flora 1914, 34, 44-47.
3. McVaugh, R. Fl. Novo-Galiciana 1984, 12, 794-799.
4. Turner, B. L. Phytologia 1995, 79, 364-368.
5. http://www.ars-grin.gov/cgi-bin/npgs/html/taxon.pl?413435.
6. Martínez, M. Las Plantas Medicinales de México, Ed. Botas. 1954.
7. Bascope, M.; Sterner, O. Rev. Bol. Quím. 2007, 24, 14-25. von Koenen, E. Medicinal, Poisonous, and Edible Plants in Namibia. Klaus Hess Publishers. Verlag. 2001. Deutschländer, M.S.; van de Venter, M.; Roux, J.L.; Lall, N. J. Ethnopharmacol. 2009, 124, 619-624. Muthaura, C.N.; Rukunga, G.M.; Chhabra, S.C.; Omar, S.A.; Guantai, A.N.; Gathirwa, J.W.; Tolo, F.M.; Mwitari, P.G.; Keter, L.K.; Kirira, P.G.; Kimani, C.W.; Mungai, G.M.; Njagi, E.N.M. Phytotherapy Research 2007, 21, 860-867.
8. Luseba, D.; Elgorashi, E. E.; Ntloedibe, D. T.; Van Staden, J. South Afr. J. Bot. 2007, 73, 378-383.
9. Bohlmann, F.; Zdero, Ch. Phytochemistry 1977, 16, 780-781.
10. Bohlmann, F.; Jakupovic, J.; Robinson, H.; King, R. Phytochemistry 1980, 19, 881-884.
11. Herz, W.; Govindan, S. Phytochemistry 1980, 19, 1234-1236.
12. Pettei, M. J.; Miura, Y.; Kubo, Y.; Nakanishi, K. Heterocycles 1978, 11, 471-480.
13. Delgado, G.; Hernández, H.; Romo de Vivar, A. J. Org. Chem. 1984, 49, 2994-2996.
14. Pérez, A. L.; Mendoza, J. S.; Romo de Vivar, A. Phytochemistry 1984, 23, 2911-2913.
15. Delgado, G.; Tejeda V. Nat. Prod. Lett. 1998, 12, 17-22.
16. Delgado, G.; Tejeda, V.; Salas, A.; Chávez, M. I.; Guzmán, S.; Bolaños, A.; Aguilar, M. I.; Navarro, V.; Villarreal, M. L. J. Nat. Prod. 1998, 61, 1082-1085.
17. García, A.; Delgado, G. Helv. Chim. Acta 2006, 89, 16-29. Cano, A.; Espinoza, M.; Ramos, C. H.; Delgado, G. J. Mex. Chem. Soc. 2006, 50, 71-75.
18. Villaseñor Ríos, J. L.; Espinosa García, F. J. Catálogo de Malezas de México. Universidad Nacional Autónoma de México y Fondo de Cultura Económica. 1998. Espinosa García, F. J.; Sarukhán, J. Manual de Malezas del Valle de México. Universidad Nacional Autónoma de México y Fondo de Cultura Económica. 1997.
19. Romo de Vivar, A.; Pérez, A. L.; León, C.; Delgado, G. Phytochemistry 1982, 21, 2905-2908.
20. Calderón, J. S.; Quijano, L.; Gómez-Garibay, F.; Sánchez, D. M.; Rios, T.; Fronczek, F. R. Phytochemistry 1987, 26, 1747-1750.
21. Hase, T.; Ohtani, K.; Kasai, R.; Yamasaki, K.; Picheansoonthon, C. Phytochemistry 1995, 40, 287-290.
22. Iwashina, T.; Kamenosono, K.; Ueno, T. Phytochemistry 1999, 51, 1109-1111.
23. Woodhead, S.; Galeffi, C.; Bettolo, G. B. M. Phytochemistry 1982, 21, 455-456.
24. Stewart, E.; Mabry, T. J. Phytochemistry 1985, 24, 2731-2732.
25. Samek, Z.; Harmatha, J. Coll. Czech. Chem. Commun. 1978, 43, 2779-2799.
26. The hypothetical 1(2),4(5)-H10α-guaiadienolide (i) could be formed from the same intermediate that would produce 11,13dehydroeriolin (1), namely, the 4(5)-epoxy-germacrolide (ii, 4α,5β-epoxy-8-epi-inunolide) [20]. The transannular reaction could afford the cation iii, and the stabilization of the reactive intermediate and dehydration can produce i.
27. Fragments A and B (Fig. 1, derived from an endo approach in the Diels Alder reaction) have the sesquiterpene residues with an extended arrangement, in contrast with the exo approach (fragments C and D, Fig. 1) that produce stacked arrangement of the sesquiterpene fragments.
28. X-ray analysis data for compound 2. All data were collected on Brucker Smart Apex CCD diffractometer using 1.93 to 25.02 θ at 293(2) K. The refinement methods was full-matrix least squares on F 2. C30H38O6; M = 494.60; crystal system monoclinic; space group P21; a = 11.162(1) Å; b = 8.6749(5) Å; c = 14.221(1) Å; α = 90°; β = 109.018(1)°; γ = 90°; V = 1301.8(1) Å3; Z = 2; Dx = 1.262 Mgm-3; M = 0.087 mm-1; F(000) = 532; crystal size 0.418 × 0.274 ´ 0.100; colorless prism. Index ranges -13 ≤ h ≤ 13, -10 ≤ k ≤ 10, -16 ≤ l ≤ 16. 10765 reflections were collected and 4577 [R(int) = 0.0558] reflections were independents. Completeness to θ = 25.02° 99.9%; final R indices [I > 2σ (I)] R1 = 0.0449, wR2 = 0.0547; R indices (all data) R1 = 0.0808, wR2 = 0.0616; Largest diff. peak and hole were 0.119 and -0.129 e Å-3. CCDC-753938 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via http://www.ccdc. cam.ac.uk/data_request/cif.
29. Delgado, G.; Guzmán, S.; Romo de Vivar, A. Phytochemistry 1987, 26, 755-759.
30. The species identified as Schkuhria anthemoidea var. wislizeni (Gray) Heiser analyzed by Mabry [24] should be considered as Schkuhria pinnata (Lam.) Kuntze var. wislizeni (A. Gray) B. L. Turner, according to Turner [4]. This is supported by the chemical constituents reported in this contribution. It is interesting to note that 11,13-dehydroeriolin (1) may be considered as a typical secondary metabolite of the species now identified as S. pinnata var. wislizeni. The original reports informing this substance as a constituent of Schkuhria schkuhrioides [13, 19] could be considered for further confirmation, since subsequent analyses for this last species [15, 16] did not afford this sesquiterpene lactone.
31. Chen, Ch.-Y.; Shen, Y.-Ch.; Chen, Y.-J-; Shen, J.-H.; Duh, CH.-Y. J. Nat. Prod. 1999, 62, 573-576.
32. Su, W.-Ch.; Fang, J.-M.; Cheng, Y.-Sh. Phytochemistry 1995, 40, 563-566.
33. Soto, C.; Recoba, R.; Barrón, H.; Álvarez, C.; Favari, L. Comp. Biochem. Physiol. 2003, 136C, 205212.
34. Quine, S. D.; Raghu, P. S. Pharmacol. Rep. 2005, 57, 610-615.
35. Narváez-Mastache, J. M.; Soto, C.; Delgado, G. Biol. Pharm. Bull. 2007, 30, 1503-1510.
36. Ohkawa, H.; Ohishi, N.; Yagi, K. Anal. Biochem. 1979, 95, 351358.
37. Coll, J. C.; Bowden, B. F. J. Nat. Prod. 1986, 49, 934-936
38. Narváez-Mastache, J. M.; Novillo, F.; Delgado, G. Phytochemistry 2008, 69, 451-456.

Downloads

Published

2019-06-24

Most read articles by the same author(s)