Stereochemical Studies on the Addition of Allylsilanes to Aldehydes. The SE’ Component

Authors

  • Scott E. Denmark University of Illinois
  • Neil G. Almstead University of Illinois

DOI:

https://doi.org/10.29356/jmcs.v53i3.1001

Keywords:

Allyllsilanes, Addition to Aldehides, Condensation Reaction, Cyclization, Stereochemistry

Abstract

Model compounds ul-1 and lk-1 have been studied to determine both the position of the silicon electrofuge and the relative orientation of the double bonds in the transition structure of the allylmetal-aldehyde condensation. The use of the deuterium label allows an unbiased assessment of the syn versus anti SE’ pathways. The synthesis of configurational proof of model systems ul-1 and lk-1 are discussed as well as the cyclization of the model system. Cyclization of model 1 was found to proceed with high selectivity via an anti SE’ pathway regardless of the proximal/distal ratio for all Lewis acids studied. Reactions promoted by fluoride ion favored the proximal product, but both syn and anti pathways were observed.

Downloads

Download data is not yet available.

Author Biographies

Scott E. Denmark, University of Illinois

Department of Chemistry

Neil G. Almstead, University of Illinois

Department of Chemistry

References

1. For pertinent reviews of allylmetal additions see: (a) Hoffmann, R. W. Angew. Chem. Int. Ed. Engl. 1987, 26, 489-503. (b) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207-2293. (c) Helmchen, G.; Hoffmann, R.; Mulzer, J.; Schaumann, E. Eds.; Stereoselective Synthesis, Methods of Organic Chemistry (Houben-Weyl); E21; Thieme; Stuttgart, 1996; Vol. 3; pp 13571602. (d) Chemler, S. R.; Roush, W. R. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; Chapter 11. (e) Yanagisawa, A. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer-Verlag: Berlin, 1999; Vol. 2, Chapter 27. (f) Denmark, S. E.; Almstead, N. G. In Modern Carbonyl Chemistry, Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; Chapter 10. (g) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763-2793.
2. To effectively describe the products observed in these reactions the stereochemical descriptors suggested by Masamune will be employed: Masamune, S.; Kaiko, T.; Garvey, D. S. J. Am. Chem. Soc. 1982, 104, 5521-5523.
3. Reviews: (a) Hoffmann, R. W. In Stereocontrolled Organic Synthesis; Trost, B. M., Ed.; Blackwell Scientific Publications: Cambridge; 1994; pp 259-274. (b) Roush, W. R. In Stereoselective Synthesis, Methods of Organic Chemistry (Houben-Weyl); E21; Helmchen, G.; Hoffmann, R. W.; Mulzer, J.; Schaumann, E., Eds.; Thieme Stuttgart: New York, 1996; Vol. 3; pp 1410-1486. (c) Hall, D. G.; Lachance, H. Org. React. 2008, 73, 1-573.
4. Reviews: (a) Gung, B. W. Org. React. 2004, 64, 1-413. (b) Yamamoto, Y. Acc. Chem. Res. 1987, 20, 243-249.
5. Reviews: (a) Sakurai, H. Pure Appl. Chem. 1982, 54, 1-22. (b) Majetich, G. In Organic Synthesis: Theory and Applications; Hudlicky, T., Ed.; JAI Press: Greenwich, 1989; Vol. 1, p. 173240. (c) Hosomi, A. Acc. Chem. Res. 1988, 21, 200-206. (d) Fleming, I.; Dunogués, J.; Smithers, R. Org. React. 1989, 37, 57575. (e) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063-2192. (f) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375-1408. (g) Masse, C. E.; Panek, J. S. Chem. Rev. 1995, 95, 1293-1316. (h) The intramolecular reactions of allylsilanes have also been reviewed: Schinzer, D. Synthesis 1988, 263-273.
6. Reviews: Furstner, A. Chem. Rev. 1999, 99, (4), 991-1045. (b) Cintas, P. Synthesis 1992, 248-257. (c) Avalos, M.; Babiano, R.; Cintas, P.; Jimenez, J. L.; Palacios, J. C., Chem. Soc. Rev. 1999, 28, 169-177. (d) Hargaden, G. C.; Guiry, P. J. Adv. Synth. Catal. 2007, 349, 2407-2424.
7. Reviews: (a) Duthaler, R. O.; Hafner, A. Chem. Rev. 1992, 92, 807-832. (b) Duthaler, R. O.; Hafner, A.; Alsters, P. L.; RotheStreit, P.; Rihs, G. Pure Appl. Chem. 1992, 64, 1897-1910. (c) Hoppe, D. In Stereoselective Synthesis; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Thieme, Stuttgart: New York, 1995; Vol. E 21b, pp 1551-1583.
8. Denmark, S. E.; Weber, E. J. Helv. Chim. Acta 1983, 66, 16551660.
9. For an early, general discussion of the topological features of reactions of double bonds see: Seebach, D.; Golinski, J. Helv. Chim. Acta 1981, 64, 1413-1423.
10. (a) Li, Y.; Houk, K. N. J. Am. Chem. Soc. 1989, 111, 1236-1240. (b) Gung, B. W.; Xue, X. Tetrahedron: Asymmetry 2001, 12, 2955-2959.
11. (a) Imachi, M.; Nakagawa, J.; Hayashi, M. J. Mol. Struct. 1983, 102, 403-412. (b) Hayashi, M.; Imachi, M.; Saito, M. Chem. Lett. 1977, 221-222. (c) Beagley, B.; Foord, A.; Moutran, R.; Roszondai, B. J. Mol. Struc. 1977, 117-120. (d) Ohno, K.; Toga, K.; Murata, M. Bull. Chem. Soc. Jpn. 1977, 50, 2870-2876.
12. White, J. M.; Clark, C. I. In Topics in Stereochemistry; Denmark, S. E., Ed.; Wiley: New York, 1999; pp 137-200.
13. Kahn, S. D.; Pau, C. F.; Chamberlin, A. R.; Hehre, W. J. J. Am. Chem. Soc. 1987, 109, 650-663.
14. For a thorough disquisition on the state of the art in SE’ reactions see: Matassa, V. G.; Jenkins, P. R.; Kümin, A.; Damm, L.; Schreiber, J.; Felix, D.; Zass, E.; Eschenmoser, A. Isr. J. Chem. 1989, 29, 321-343.
15. (a) Fleming, I.; Terrett, N. K. Pure Appl. Chem. 1983, 55, 17071713. (b) Fleming, I. Pure Appl. Chem., 1988, 60, 71-78.
16. (a) Carter, M. J.; Fleming, I. J. Chem. Soc. Chem. Commun, 1976, 679-680. (b) Au-Yeung, B.-W.; Fleming, I. J. Chem. Soc. Chem. Commun. 1977, 79-80. (c) Au-Yeung, B.-W.; Fleming, I. J. Chem. Soc. Chem. Commun. 1977, 81. (d) Fleming, I.; Williams, R. V. J. Chem. Soc. Perkin I, 1981, 684-688. (e) Carter, M. J.; Fleming, I.; Percival, A. J. Chem. Soc. Perkin I, 1981, 2415-2434. (f) Chan, T. H.; Fleming, I. Synthesis, 1979, 761-786. (g) Fleming, I.; Au-Yeung, B. -W. Tetrahedron Suppl. 1 1981, 37, 13-24. (h) Fleming, I.; Terrett, N. K. Tetrahedron Lett. 1984, 25, 5103-5104.
17. (a) Fleming, I.; Terrett, N. K. J. Organomet. Chem. 1984, 264, 99-118. (b) Fleming, I. Terrett, N. K. Tetrahedron Lett. 1983, 24, 4153-4156. (c) Chow, H.-F.; Fleming, I. Tetrahedron Lett. 1985, 26, 397-400. (d) Fleming, I.; Sarkar, A. K.; Thomas, A. P. J. Chem. Soc. Chem. Commun. 1987, 157-159.
18. (a) Wetter, H.; Scherer, P.; Schweizer, W. B. Helv. Chim. Acta 1979, 62, 1985-1989. (b) Wetter, H.; Scherer, P. Helv. Chim. Acta 1983, 66, 118-122.
19. (a) Young, D.; Kitching, W. Tetrahedron Lett. 1983, 24, 57935796. (b) Wickham, G.; Kitching, W.J. Org. Chem. 1983, 48, 612-614. (c) Wickham, G.; Kitching, W. Organometallics 1983, 2, 541-547. (d) Young, D.; Kitching, W.; Wickham, G. Tetrahedron Lett. 1983, 24, 5789-5792. (e) Young, D.; Kitching, W. Aust. J. Chem. 1985, 38, 1767-1777. (f) Young, D.; Jones, M.; Kitching, W. Aust. J. Chem. 1986, 39, 563-573. (g) Wickham, G.; Young, D.; Kitching, W. Organometallics 1988, 7, 1187-1195.
20. (a) Hayashi, T.; Konishi, M.; Kumada, M. J. Am. Chem. Soc. 1982, 104, 4963-4965. (b) Hayashi, T.; Konishi, M.; Kumada, M. J. Org. Chem. 1983, 48, 281-282. (c) Hayashi, T.; Ito, H.; Kumada, N. Tetrahedron Lett. 1982, 23, 4605-4606. (d) Hayashi, T.; Okamoto, Y.; Kabeta, K.; Hagihara, T.; Kumada, M. J. Org. Chem. 1984, 49, 4224-4226.
21. Panek, J. S.; Yang, M. J. Am. Chem. Soc. 1991, 113, 9868-9870.
22. (a) Denmark, S. E.; Weber, E. J. J. Am. Chem. Soc. 1984, 106, 7970-7971. (b) Denmark, S. E.; Henke, B. R.; Weber, E. J. J. Am. Chem. Soc. 1987, 109, 2512-2514. (c) Denmark, S. E.; Weber, E. J.; Wilson, T. M.; Willson, T. M. Tetrahedron 1989, 45, 10531065.
23. (a) Shambayati, S.; Crowe, W. E.; Schreiber, S. L. Angew. Chem. Int. Ed. 1990, 29, 256-272. (b) Ooi, T.; Maruoka, K. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; Chapter 1. (c) Saito, S.; Yamamoto, H. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, 2000; Chapter 2. (c) Reetz, M. T.; Hüllmann, M.; Massa, W.; Berger, S.; Rademacher, P.; Heymanns, P. J. Am. Chem. Soc. 1986, 108, 2405-2408. (d) Denmark, S. E.; Henke, B. R.; Weber, E. J. Am. Chem. Soc. 1987, 109, 2512-2514. (e) Denmark, S. E.; Almstead, N. G. J. Am. Chem. Soc. 1993, 115, 3133-3139. 24. (a) Keck, G. E.; Castellino, S. J. Am. Chem. Soc. 1986, 108, 3847-3849. (b) Keck, G. E.; Castellino, S.; Wiley, M. R. J. Org. Chem. 1986, 51, 5478-5480. (c) Filippini, F.; Susz, B. -P. Helv. Chim. Acta 1971, 54, 835-845. (d) Beattie, I. R. Quart. Rev. 1963, 17, 382-405.
25. Biddle, M. M.; Reich, H. J. J. Org. Chem. 2006, 71, 4031-4039.
26. (a) Fleming, I.; Terrett, N. K. J. Organomet. Chem. 1984, 264, 99-118. (b) Fleming, I. Terrett, N. K. Tetrahedron Lett. 1983, 24, 4153-4156. (c) Chow, H.-F.; Fleming, I. Tetrahedron Lett. 1985, 26, 397-400. (d) Fleming, I.; Sarkar, A. K.; Thomas, A. P. J. Chem. Soc. Chem. Commun. 1987, 157-159.
27. Gerlach, H.; Mueller, W. Angew. Chem. Int. Ed. Engl. 1972, 11, 1030-1031.
28. (a) Smithers, R. H. J. Org. Chem. 1978, 43, 2833-2838. (b) Matsumoto, M.; Kuroda, K. Tetrahedron Lett. 1980, 21, 40214024.
29. (a) Bachman, G. B. J. Am. Chem. Soc. 1933, 55, 4279-4284. (b) Farrell, J. K.; Bachman, G. B. J. Am. Chem. Soc. 1935, 57, 12811283.
30. (a) Wolinsky, J.; Erickson, K. L. J. Org. Chem. 1965, 30, 22082211. (b) Dawson, T. M.; Dixon, J.; Littlewood, R. S.; Lythgoe, B. J. Org. Chem. 1971, 2352-2355.
31. Wadsworth, W. S. Org. React. 1977, 25, 73-253.
32. (a) Tomboulian, P.; Stehower, K. J. Org. Chem. 1968, 33, 15091512. (b) House, H. O.; Trost, B. M. J. Org. Chem. 1965, 30, 1341-1348.
33. Reider, P. J.; Eichen Conn, R.; S.; Davis, P.; Grenda, V. J.; Zambito, A. J.; Grabowski, E. J. J. J. Org. Chem. 1987, 52, 33263334.
34. The stereochemical families are defined by the Seebach-Prelog recommendations by consideration of the two stereocenters of the allylsilane: Seebach, D.; Prelog, V. Angew. Chem. Int. Ed. Engl. 1982, 21, 654-660.
35. Ratcliffe, R.; Rodehorst, R. J. Org. Chem. 1970, 35, 4000-4002.
36. The configuration of the hydroxyl group was assigned on the basis of the slope of the LIS of the methylidene group with Eu(fod)3: syn-2, 6.61 ppm/equiv.; anti-2, 2.81 ppm/equiv. See reference 8. 37. (a) Middleton, W. J. Org. Syn. 1985, 64, 221-225. (b) Szarek, W. A.; Hay, G. W.; Dozoszewski, B. J. Chem. Soc., Chem. Commun. 1985, 663-664.
38. (a) Hosomi, A.; Shirahata, A.; Sakurai, H. Tetrahedron Lett. 1978, 3043-3046. (b) Hosomi, A.; Shirahata, A.; Sakurai, H. Chem. Lett. 1978, 901-904.
39. DePuy, C. H.; Bierbaum, V. M.; Flippin, L. A.; Grabowski, J. J.; King, G. K.; Schmitt, R. J.; Sullivan, S. A. J. Am. Chem. Soc. 1980, 102, 5012-5015.
40. (a) Majetich, G.; Casares, A.; Chapman, D.; Behnke, M. J. Org. Chem. 1986, 51, 1745-1753. (b) Majetich, G.; Desmond, R. W. Jr.; Soria, J. J. J. Org. Chem. 1986, 51, 1753-1769.
41. (a) Corriu, R. Pure Appl. Chem. 1988, 60, 99-106. (b) Corriu, R. J. P.; Guerin, C.; Moreau, J. J. E. Top. Stereochem. 1984, 15, 158-178. (c) Furin, G. G.; Vyazankina, O. A.; Gostevsky, B. A.; Vyazankin, N. S. Tetrahedron, 1988, 44, 2675-2749.
42. This conclusion assumes that the rotation of the terminal methylene group of the allyl anion is faster than addition to the aldehyde.
43. Sakurai, H. Synlett. 1989, 1, 1-8.
44. Still, W. C.; Kahn, M.; Mitra, A. J. J. Org. Chem. 1978, 43, 29232925.
45. Gilman, H.; Schulze, F. J. Am. Chem. Soc. 1925, 47, 2002-2005.

Downloads

Published

2019-06-24