Substituent and Solvent Effects on the Electronic and Structural Properties of Silacyclopropylidenoids

Authors

  • Akin Azizoglu Laboratory?of?Computational?Chemistry,?Department?of?Chemistry,?Faculty?of?Arts?and?Sciences,?University?of?Balikesir,? Balikesir,?Turkey

DOI:

https://doi.org/10.29356/jmcs.v59i1.10

Keywords:

Silacyclopropylidene, ab initio, MP2, reactive intermediate

Abstract

The isomeric structures, energies, and properties of the substituted silacyclopropylidenoids, SiC2H3RLiBr (R= –H, –CH3, –SiH3, –CN, –OH, –NH2), were studied by ab initio calculations at the MP2/6-311+G(d,p) level of theory. The calculations indicate that each of SiC2H3RLiBrs for R= –H, –CH3, –SiH3, –CN, –OH, –NH2 has three stationary structures: silacyclopropylidenoid (S), tetrahedral (T1 or T2), and inverted (I). The conductor–like polarizable continuum model (CPCM) using various solvents (dimethyl sulfoxide (ε = 46.7), acetone (ε = 21.0), tetrahydrofuran (ε = 7.5), and diethyl ether (ε = 4.3)) has been applied to compute single point energies for title molecules. In addition, the molecular electrostatic potential maps, natural bond orbitals, and the frontier molecular orbitals of substituted silacyclopropylidenoids were calculated.

Downloads

Download data is not yet available.

References

Tamao, K.; Kawachi, A. Angew. Chem. Int. Ed. Engl. 1995, 34, 818–820.

Pietschnig, R. J. Chem. Soc. Chem. Commun. 2004, 2004, 546–547.

Molev, G.; Zhivotovskii, D. B.; Karni, M.; Tumanskii, B.; Botoshansky, M.; Apeloig, Y. J. Am. Chem. Soc. 2006, 128, 2784–2785.

Cho, H. M.; Lim, Y. M.; Lee, B. W.; Park, S. J.; Lee, M. E. J. Organomet. Chem. 2011, 696, 2665–2668.

Clark, T.; Schleyer, P. v. R. J. Organomet. Chem. 1980, 191, 347–353.

Feng, S.; Feng, D.; Deng, C. Chem. Phys. Lett. 1993, 214, 97–102.

Flock, M.; Marschner, C. Chem. Eur. J. 2005, 11, 4635–4642.

Qi, Y.; Chen, Z.; Li, P. Comput. Theory Chem. 2012, 969, 61–65.

Feng, S.; Feng, D.; Li, M.; Bu, Y. Chem. Phys. Lett. 2001, 339, 103–109.

Feng, S. Y.; Feng, D. C.; Li, M. J. Int. J. Quant. Chem. 2002, 87, 360–365.

Sigal, N.; Apeloig, Y. J. Organomet. Chem. 2001, 636, 148–156.

Escudie, J.; Ranaivonjatovo, H.; Bouslikhane, M.; Harouch, Y. E.; Baiget, L.; Nemes, G.C. Russ. Chem. Bull. Int. Ed. 2004, 53, 1020–1033.

Fedorynski, M. Chem. Rev. 2003, 103, 1099–1132.

Azizoglu, A.; Ozen, R.; Hokelek, T.; Balci, M. J. Org. Chem. 2004, 69, 1202–1206.

Azizoglu, A.; Balci, M.; Mieusset, J-L.; Brinker, U. H. J. Org. Chem. 2008, 73, 8182–8188.

Kilbas, B.; Azizoglu, A.; Balci, M. J. Org. Chem. 2009, 74, 7075–7083.

Azizoglu, A.; Yildiz, C. B. Organometallics 2010, 29, 6739–6743.

Azizoglu, A.; Yildiz, C. B. J. Organomet. Chem. 2012, 715, 19–25.

Yildiz, C. B.; Azizoglu, A. Struct. Chem. 2012, 33, 1777–1784.

Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley & Sons: New York, 1986.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al–Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03. Revision C02 ed.; Gaussian, Inc., Pittsburgh PA, 2003.

Barone, V.; Cossi, M. J. Phys. Chem. A. 1998, 102, 1995–2001.

Cossi, M.; Barone, V. J. Chem. Phys. 2001, 115, 4708–4717

Barone, V.; Cossi, M.; Rega, N.; Scalmani, G. J. Comput. Chem. 2003, 24, 669–681.

Dennington, R.; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W. L.; Gilliland, R. GaussView. Version 3.0; Semichem, Inc., Shawnee Mission, KS, 2003.

Wiberg, K. B. Tetrahedron 1968, 24, 1083–1096.

Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899–926.

Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 1434–1445.

Politzer, P.; Abrahmsen, L.; Sjoberg, P. J. Am. Chem. Soc. 1984, 106, 855–860.

Jovanovski, G.; Cahil, A.; Grupce, O.; Pejov, L. J. Mol. Struct. 2006, 784, 7–17.

Sánchez-Sanz, G.; Trujillo, C.; Alkorta, I.; Elguero, J. Comput. Theory Chem. 2012, 991, 124–133.

Yildiz, C. B.; Azizoglu, A. Comput. Theory Chem. 2013, 1023, 24–28.

Kassaee, M. Z.; Naja?, Z.; Shakib, F. A.; Momeni, M. R. J. Organomet. Chem. 2011, 696, 2059–2064.

Fleming, I. Frontier Orbitals and Organic Chemical Reactions; John Wiley & Sons: London, 1976.

Cabrera-Trujillo, J.M.; Robles, J. Phys. Rev. B, 2001, 64, 165408.

Azizoglu, A. Struct. Chem. 2003, 14, 575–580.

Ugras, H. I.; Cakir, U.; Azizoglu, A.; K?l?c, T.; Erk, C. J. Incl. Phenom. Macrocycl. Chem. 2006, 55, 159–165.

Aparicio, F.; Garza, J.; Galván, M. J. Mex. Chem. Soc. 2012, 56, 338–345.

Mendoza-Huizar, L.M.; Rodríguez, D.E.G.; Rios-Reyes, C.H.; Alatorre-Ordaz, A. J. Mex. Chem. Soc. 2012, 56, 302–310.

Ghiasi, R.; Boshak, A. J. Mex. Chem. Soc. 2013, 57, 8–15.

Downloads

Published

2017-10-12

Issue

Section

Regular Articles