
Review        J. Mex. Chem. Soc. 2025, 69(1) 
Special Issue 

©2025, Sociedad Química de México 
ISSN-e 2594-0317 

 
 

268 
Special issue: Celebrating 50 years of Chemistry at the Universidad Autónoma Metropolitana. Part 2 

 
The Use of Grand Canonical Density Functional Theory Global and Local 
Reactivity Parameters to Study Electrochemical Processes in Energy 
Storage Materials 

 
Claudia Islas-Vargas1,3, Alfredo Guevara-García2, Marcelo Galván1* 
 
1Departamento de Química, Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael Atlixco 186, 
Leyes de Reforma 1ra Secc, Iztapalapa, 09340, Ciudad de México, México. 
2Departamento de Química, CONAHCYT-Universidad Autónoma Metropolitana Iztapalapa, Av. San Rafael 
Atlixco 186, Leyes de Reforma 1ra Secc, Iztapalapa, 09340, Ciudad de México, México. 
3Sección de Química Analítica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma 
de México, Cuautitlán Izcalli, México. 
 
*Corresponding author: Marcelo Galván, email: mgalvan@xanum.uam.mx  
 
Received May 22nd, 2024; Accepted September 23rd, 2024. 
 
 
DOI: http://dx.doi.org/10.29356/jmcs.v69i1.2289                                    
 
 
Abstract. In this review a summary of the results obtained in a collaboration between electrochemists and theoretical 
physical chemists in the chemistry department of the Metropolitan Autonomous University Campus Iztapalapa in 
recent years is presented. The focus is on the study of materials involved in electrochemical storage devices such as 
batteries and capacitors, and in advance electrochemical oxidation reactions. Along this collaboration, the 
combination of density functional theory reactivity parameters within the Grand Canonical Density Functional 
Theory give rise to an alternative approach to follow redox processes in bulk materials and in solid-liquid interfaces. 
Along the review, we show how global and local softness emerge as suitable and ad hoc quantities to analyze 
electrochemical experiments. The use of local softness to distinguish “innocent” coordination environments from the 
active ones is exemplified with representative systems. A robust method to estimate quantum and total capacitances 
is described in the case of substituted graphene and is also applicable to other systems. Also, the introduction of an 
absolute approximate scale to characterize the redox properties of electrode-solvent systems is illustrated for a set of 
well-known surfaces of transition metal oxides. 
Keywords: Grand canonical density functional theory; local and global softness; quantum capacitance; oxygen 
evolution. 
 
Resumen. En esta revisión se presenta un resumen de los resultados obtenidos de una colaboración entre 
electroquímicos y fiscoquímicos teóricos del departamento de química de la Universidad Autónoma Metropolitana 
Unidad Iztapalapa en los últimos años. Se hace énfasis en el estudio de los materiales implicados en los dispositivos 
de almacenamiento electroquímico de energía, como baterías y capacitores, y en las reacciones de oxidación 
electroquímica avanzada. Se analiza el uso de los parámetros de reactividad definidos en la Teoría de Funcionales de 
la Densidad en su formulación Gran Canónica para estudiar procesos redox en el bulto de los materiales y en 
intercaras sólido-líquido. Se muestran ejemplos de cómo la blandura química global y local emergen como cantidades 
ad hoc para analizar el comportamiento de los materiales que participan en procesos electroquímicos. En partícular, 
se muestra un ejemplo del uso de la blandura química local para distinguir, en procesos redox, los entornos de 
coordinación "inocentes" de los activos. Se describe también un método para estimar las capacitancias cuánticas y 
totales en el caso del grafeno sustituido y que es aplicable a intercaras sólido-liquido en general. Por otra parte, se 
ilustra, para un conjunto de superficies bien conocidas de óxidos de metales de transición, el uso de una escala 
absoluta aproximada para caracterizar en forma relativa las propiedades redox de los sistemas electrodo-disolvente. 

http://dx.doi.org/10.29356/jmcs.v69i1.2289
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Palabras clave: Teoría de Funcionales de la Densidad Gran Canónica; blanduras químicas global y local; 
capacitancia cuántica; evolución de oxígeno. 

 
 
Introduction 
 

The application of electronic structure calculations for describing electrochemical processes has a long 
history and there are many theoretical efforts to obtain data and develop concepts to understand electrochemical 
phenomena.[1-24] In this context, efficient and precise prediction of redox potentials (RP) for extensive and 
varied sets of molecules and materials is crucial for the advancement of energy storage, wastewater treatment, 
conversion devices, catalysis, corrosion inhibition, amongst other applications. Efforts have been made to 
overcome these challenges by employing a range of computational approaches which aim to balance accuracy 
and computational efficiency such as density functional theory (DFT), semiempirical methods, wave function-
based methods like Møller-Plesset perturbation theory (MP2) and coupled-cluster (CC), and machine learning 
approaches. Several publications are dedicated to this topic and readers are encouraged to consult the works 
made by Cramer and Truhlar [8,11], Arumugam and Becker [13], Pantazis et al. [12], Fornari and de Silva [9], 
Xue et al. [7], Neugebauer et al. [5] and Fedorov and Gryn’ova [10] for further insights.  

Due to the complexity and size of the models needed to make an appropriate description of 
electrochemical systems, the most widely used methods in these applications are those based on DFT;[25] and 
ab-initio molecular dynamics based on DFT has been particularly useful to obtain RP. [1,2,14,15] Also, the 
simulation of electrochemical interfaces,[3] the evaluation of bulk properties of materials for energy storage,[6] 
and the study of electrocatalytic reactions [24] have reached remarkable standards. 

DFT is not only a good calculational tool, alternative to the wave function approaches, but also, it is a 
powerful framework to connect chemical concepts with response properties defined within its mathematical 
structure;[26] along this research line there are successful developments to apply conceptual DFT (CDFT) 
defined quantities for studying electrochemistry. [4,16-23] The estimation of redox potentials using CDFT 
response function has been linked to Grand Canonical DFT (GCDFT) formalism since the pioneer works of 
Moens et al, [16,17] but there are approaches using the Canonical formulation of DFT too [18]. Direct 
applications of CDFT to electrochemical process have been done using the GCDFT [4,20] and the Canonical 
version of the theory. [19,21-23] As has been pointed out, the applications of GCDFT in the context of CDFT 
is an emerging research topic,[27] based on the recently developed mathematical framework;[28] and 
electrochemistry is in the front row of these kind of applications. 

 In recent years, there has been an effort between colleagues of the theoretical chemistry and 
electrochemistry groups in the Chemistry Department at the Universidad Autónoma Metropolitana, Unidad 
Iztapalapa (UAM-I) to collaborate for studying some aspects of electrochemistry processes. In this context, the 
scope of this review deals with the application of reactivity concepts defined in DFT to the analysis of 
electrochemical processes. It is pertinent to note that the objective of this work is to provide an overview of the 
advancements achieved within our research group, and it does not aim to offer a compilation of all the theories 
and concepts developed within this field throughout the years for the scientific community in general. Our aim 
is to analyze and assess the methods used, and the insights and progress generated by our group's research 
efforts in understanding how electronic structure calculations intersect with electrochemistry. 

In general, an electrochemical process involves a charge transfer; and this transfer can involve two 
different kinds of charged particles, electrons and/or ions. For this reason, in the simulation of such chemical 
events, it is necessary to treat the systems involved as open systems from the point of view of ions and electrons. 
So, in principle one must use a Grand Canonical formalism to treat ions and electrons. In batteries, a key process 
to analyze in electrode materials is the redox changes induced during the intercalation or deintercalation of ions 
in the crystal framework; fortunately, this process can be studied with periodic conditions methods under 
electroneutral conditions using a model of the bulk material which is feasible to treat with standard methods for 
the evaluation of the electronic structure of solids.[6] For the theoretical treatment of the solid-liquid interfaces, 
that are relevant systems in electrochemistry, what is needed is the study of a charged surface in contact with a 
solvent containing ions at a certain concentration. A reasonable representation of such a complex system needs 
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to have a suitable model of a surface in contact with the electrolyte and allow the solid surface to be charged as 
a response to an imposed potential. If one must use periodic conditions, the treatment of charged quantum 
systems requires, in addition to what was mentioned above, to generate neutral unit cells to avoid the long range 
inter cells coulombic contributions. There are two ways of generating electroneutral unit cells, on the one hand, 
it is possible to use a compensating jellium media with the same charge of the solid surface in calculations at a 
fixed number of electrons; on the other hand, one may include a solvent model with dipole and monopole 
responses that compensate the induced charge on the solid surface. This second approach is the one used in our 
group to describe solid-liquid interfaces. In addition, to reduce the size of the model, a half cell connected to an 
electrons bath at a certain chemical potential is used. This situation requires treating the quantum system as an 
open one with respect to the electrons and our approach avoids a treatment of an open system with respect to 
ions: in other words, the treatment of solid-liquid interfaces is restricted to be grand canonical for electrons but 
not for ions. Therefore, the use of the Grand Canonical Finite Temperature Density Functional Theory (GCDFT) 
[29,30] is mandatory. To our knowledge, the Joint Density Functional Theory (JDFT) [31-38] developed by the 
group of Professor Arias fulfills all the key physical aspects to take into account for studying the electronic 
structure of an electrode in a solid-liquid interface in the context of the GCDFT. In this review we will 
summarize the efforts of our research group to evaluate response quantities defined in the GCDFT chemical 
reactivity formalism and the application of them to study electron transfer processes in solids, especially in 
active materials for batteries, and in solid-liquid interfaces to describe electrochemical capacitors and advanced 
electrochemical oxidation reactions. Accordingly, the review is organized as follows. Then the use of local 
softness to predict oxygen evolution reactions in alkali-ion batteries is explained. As the use of a robust solvent 
model in the study of solid-liquid electrochemical systems is required, we describe JDFT formalism with 
emphasis in the solvent model in "Joint Density Functional Theory" section; after that the results obtained using 
this solvent model to calculate the quantum capacitances of graphene are displayed, followed by a comparison 
of redox properties of several solid-liquid interfaces of metal oxides. Finally, the conclusions are depicted. 
 
 
Grand Canonical DFT Formalism 
 

In the Grand Canonical Finite Temperature Density Functional Theory (GCDFT) [29,30] the Grand 
Potential, Ω[𝜇𝜇,𝑉𝑉(𝒓𝒓),𝑇𝑇] , has the central role instead of the Total Energy, 𝐸𝐸[𝑁𝑁,𝑉𝑉(𝒓𝒓)]. The Grand Potential has 
the external potential, V(r), the chemical potential of the electron reservoir, 𝜇𝜇, and the temperature, T, as natural 
variables. To emphasize the density dependence and the fact that in the GCDFT this property is an ensemble 
average, one may define the grand potential as:[39] 
 

Ω[〈𝜌𝜌(𝒓𝒓)〉] = 𝐸𝐸[〈𝜌𝜌(𝒓𝒓)〉]− 𝑇𝑇𝑇𝑇[〈𝜌𝜌(𝒓𝒓)〉]− 𝜇𝜇〈𝑁𝑁〉 (1) 
 

In this notation 𝜇𝜇 and 〈𝜌𝜌(𝒓𝒓)〉 are the chemical potential of the electrons reservoir (bath) and the 
ensemble average electron density respectively; and 〈𝑁𝑁〉 is the ensemble average of the number of electrons, 
〈𝑁𝑁〉 = ∫〈𝜌𝜌(𝒓𝒓)〉𝑑𝑑𝒓𝒓 . By identifying the Helmholtz free energy, 𝐴𝐴, as the two first terms of the right side of Eq. 
1, one may rewrite this equation as 
 

Ω[𝜇𝜇,𝑉𝑉(𝒓𝒓),𝑇𝑇] = 𝐴𝐴 − 𝜇𝜇〈𝑁𝑁〉 (2) 
 

That is the Legendre transformation of 𝐴𝐴 with respect to 〈𝑁𝑁〉. By this transformation there is an implicit 
formal change from the dependence of 𝐴𝐴 on 〈𝑁𝑁〉 to a dependence on 𝜇𝜇. Eq. 2 is a formal definition of the Grand 
Potential in the context of the GCDFT formalism. In a section below a detailed description of the Helmholtz 
free energy is developed within the Joint Density Functional Theory. 

According to Eq. 2, in the GCDFT any change in the grand potential in terms of its natural variables 
at constant temperature is given by 
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𝛿𝛿Ω = −〈𝑁𝑁〉𝑑𝑑𝜇𝜇 + �〈𝜌𝜌(𝒓𝒓)〉𝛿𝛿𝑉𝑉(𝒓𝒓)𝑑𝑑𝒓𝒓 (3) 

  
Within the formalism outlined above the concept of chemical softness was developed as global, local 

and non-local quantities:[28,40] 
 

𝑇𝑇 ≡ �
𝜕𝜕〈𝑁𝑁〉
𝜕𝜕𝜇𝜇

�
𝑇𝑇,𝑉𝑉(𝒓𝒓)

 (4) 

  

𝑇𝑇(𝒓𝒓) ≡ �
𝜕𝜕〈𝜌𝜌(𝒓𝒓)〉
𝜕𝜕𝜇𝜇

�
𝑇𝑇,𝑉𝑉(𝒓𝒓)

= −�
𝜕𝜕〈𝑁𝑁〉
𝜕𝜕𝑉𝑉(𝒓𝒓)

�
𝑇𝑇,𝜇𝜇

 (5) 

  

𝑇𝑇(𝒓𝒓,𝒓𝒓´) ≡ −�𝛿𝛿〈𝜌𝜌(𝒓𝒓)〉
𝛿𝛿𝑉𝑉(𝒓𝒓´)

�
𝑇𝑇,𝜇𝜇

      (6) 

 
The equality in Eq. 5 is a Maxwell relation obtained from Eq. 3. By using Eqs. 3-5, a change in the 

average number of electrons is written as 
 

𝑑𝑑〈𝑁𝑁〉 = 𝑇𝑇𝑑𝑑𝜇𝜇 − �𝑇𝑇(𝒓𝒓)𝛿𝛿𝑉𝑉(𝒓𝒓)𝑑𝑑𝒓𝒓 (7) 

 
As one may conclude by analyzing Eq. 7, global, 𝑇𝑇, and local 𝑇𝑇(𝒓𝒓) softness are reactivity parameters 

related to the capability of the system to perform electron transfer. They can be related to fluctuations in the 
number of electrons and the electron density. Also, softness is a concept related to polarizability.[41] In 
addition, the softness kernel, 𝑇𝑇(𝒓𝒓, 𝒓𝒓´), is connected to the linear response function. The usefulness of softness 
in the interpretation of reactive trends in molecules and solids is well documented.[26] One interesting property 
of the hierarchy of softness quantities is that they are related by simple integration: local softness is the integral 
of the softness kernel with respect to one of the two position variables; and global softness is equal to the space 
integral of local softness. As the fukui function,[42] local softness is an extensive property in the sense that any 
spatial partition of the density gives rise to an equivalent partition of the property; thus, one can define regional 
softnesses within a chemical system. For the purposes of this review, we will develop applications of softness 
in electron transfer processes in solids, especially in active materials for batteries, and in solid-liquid interfaces 
to describe electrochemical capacitors and advanced electrochemical oxidation reactions. 
 
 
Local softness to predict oxygen evolution reactions in alkali-ion batteries 
 

Redox properties of active materials are fundamental to understanding the performance of alkali-ion 
batteries. Electrons flow between the positive and the negative electrodes during the charge and discharge 
processes while the alkali ions are intercalated in the active materials to compensate for the generated charge, 
[43,44] see Fig. 1. Commonly used active materials, for the cathodes, usually contain metal ions bound to 
ligands.[45] These ligands can be classified as actor or spectator ligands according to their participation in the 
localization or delocalization of the added electrons in the host material,[4] in other words, according to their 
contribution to the bands involved in the redox process. These two cases are schematically represented in Fig. 
1. For spectator ligands, the acquired electrons are mainly located over the reduced metal centers. In these cases, 
it seems that electrostatic interactions are all you need to explain or predict the experimental intercalation 
voltages,[4] but in some cases we have found that dispersion interactions may be needed to reproduce the 
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observed values.[46] When actor ligands appear the electrons are distributed in bands with metal and ligand 
character. One way to evaluate this contribution is to analyze the partial density of states (PDOS) near de Fermi 
level. As shown by Johannes et al.,[47] this can also be used to evaluate the stability of Li-ion active cathode 
materials related to oxygen gas evolution. The main idea is to compute the PDOS and analyze their contribution 
to the total density of states near the Fermi level. If the DOS has a higher contribution of states from oxygen 
atoms i.e. a higher oxygen character, the cathode material is prone to suffer oxygen evolution reactions and if 
the DOS has a higher metal character, oxygen evolution reactions may not occur. Because their analysis depends 
on the quality of the description of the states near the Fermi level, they pointed out the need to use a range 
separated hybrid functional for this goal.[48] With this in mind, two of the authors[49] proposed the use of local 
softness[40, 50] as an alternative way to obtain information on how redox processes happen in this kind of 
materials. In the context of solids and using a Taylor expansion up to first order to evaluate the difference in 
electron density between a system where its electron density is modified as a result of a change in the chemical 
potential from a reference one and a system at that reference chemical potential, one can derive a finite 
difference approximation for the local softness as:[49] 
 

𝑇𝑇(𝒓𝒓) ≈ 1
∆𝜇𝜇 ∫ 𝑔𝑔(𝒓𝒓, 𝜀𝜀, 𝜇𝜇0)𝑑𝑑𝜀𝜀𝜇𝜇0+Δ𝜇𝜇

𝜇𝜇0
+ ∫ �𝜕𝜕𝜕𝜕(𝒓𝒓,𝜀𝜀,𝜇𝜇)

𝜕𝜕𝜇𝜇
�
𝑉𝑉(𝒓𝒓),𝜇𝜇=𝜇𝜇0

𝑑𝑑𝜀𝜀𝜇𝜇0+∆𝜇𝜇       (8) 

 
where 𝑇𝑇(𝒓𝒓) is the local softness, 𝜇𝜇 is the chemical potential, and  𝑔𝑔(𝒓𝒓, 𝜀𝜀, 𝜇𝜇) is the local density of states. It 
should be remembered that the change in the electron density 𝜌𝜌(𝒓𝒓), while changing 𝜇𝜇, is evaluated at constant 
external potential 𝑉𝑉(𝒓𝒓). If the second term of the above equation, that accounts for the relaxation of the local 
density of states when the chemical potential is changed, is ignored, an expression for the local softness within 
the rigid band approximation can be obtained: 
 

𝑇𝑇(𝐫𝐫) ≈ 1
Δ𝜇𝜇 ∫ 𝑔𝑔(𝐫𝐫, 𝜀𝜀, 𝜇𝜇0)𝑑𝑑ε𝜇𝜇0+Δ𝜇𝜇

𝜇𝜇0
    (9) 

 
The sign of the change in the chemical potential ∆𝜇𝜇 determines if the system is gaining or losing 

electrons. ∆𝜇𝜇 is selected to account for the loss or gain of one electron, according to the next equation: 
 

∫ ∫ 𝑔𝑔(𝐫𝐫, 𝜀𝜀, 𝜇𝜇0)𝑑𝑑𝜀𝜀𝑑𝑑𝒓𝒓𝜀𝜀𝑓𝑓+Δ𝜇𝜇
𝜀𝜀𝑓𝑓Ω = 1.0         (10) 

 
where the integral over 𝒓𝒓 is done in the unit cell volume, Ω. As in this case the processes to analyze are in bulk, 
the influence of the solvent is not included. 

The local softness computed for LiFePO4 under the conditions described above is shown in Fig. 2. As 
can be seen from that figure, the yellow surfaces that represent the local softness lie over the iron atoms 
indicating that if one tries to remove an electron from LiFePO4, that electron might come from those regions. 
LiFePO4 is a material with spectator ligands. One of the advantages of using the local softness to analyze the 
oxygen character of the states around the Fermi level of different compounds is that a semiquantitative 
comparison can be made between different systems. For example, Fig. 3 shows the local softness for Li2CuO2 
and LiCuO2. These two materials have actor ligands as can be appreciated in the last figure, where it is clear 
that electrons can be removed not only from the metal center but also from the oxygen atoms coordinated to 
them. As shown by the size of the local softness plots, it can be inferred that it is easier to remove electrons 
from the oxygen atoms in LiCuO2 compared to Li2CuO2. In summary, computing the local softness in cathode 
materials to understand the electronic states near the Fermi level is an alternative way that gives a direct insight 
of the nature of the states involved in redox processes. 
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Fig. 1. Schematic representation of the components of an alkali ion battery, the intercalation and deintercalation 
processes that occur during the charge and discharge of the battery and the two possible scenarios where the 
ligands are involved in the localization or delocalization of the electrons of the reduced state of the metal centers. 
 
 
 
 

 
Fig. 2. Local softness 0.354 a.u. isosurface plot for LiFePO4. The S(r) isosurface is shown in yellow. This figure 
is not part of the governing open access license but has been reproduced with permission from Springer Nature 
Customer Service Centre GmbH, from Perea-Ramírez, L. I.; Guevara-García, A.; Galván, M. Journal of 
Molecular Modeling 2018, 24, 227, Spring Nature. The rights of this figure are owned by a third party. 
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Fig. 3. Local softness 0.354 a.u. isosurface plots for Li2CuO2(left) and LiCuO2 (right). The S(r) isosurfaces are 
shown in yellow. This figure is not part of the governing open access license but has been reproduced with 
permission from Springer Nature Customer Service Centre GmbH,  from Perea-Ramírez, L. I.; Guevara-García, 
A.; Galván, M. Journal of Molecular Modeling 2018, 24, 227, Spring Nature. The rights of this figure are owned 
by a third party. 
 
 
 
Joint Density Functional Theory 
 

In electrochemical experiments, solvents are involved in stabilizing and allowing the movement of the 
ions between electrodes, modifying  the thermodynamics and kinetics of the reactions taking place on the 
electrodes [51] or affecting properties like capacitance in supercapacitors [52], so, in some cases is unavoidable 
to include their effects to correctly  explain or describe them. 

The Joint Density Functional Theory(JDFT) [53]  formalism is designed to treat electrochemical 
systems from the perspective of solid-state methods that use periodic conditions. It provides a framework where 
the system is separated into a solute, this can be a surface or a molecule, and the solvent which can be an 
electrolyte solution.  

The variational principle associated to this theory, corresponds to the minimization of the Helmholtz 
free energy, A:  
 

A = min
{ρ(𝐫𝐫),ρα(𝐫𝐫)}

�A�𝐽𝐽𝐽𝐽𝐽𝐽𝑇𝑇[ρ(𝐫𝐫), {ρα(𝐫𝐫)}] + �𝑑𝑑𝒓𝒓𝑉𝑉(𝒓𝒓)ρ(𝐫𝐫) + ��𝑑𝑑𝒓𝒓𝑉𝑉𝛼𝛼(𝒓𝒓)ρα(𝐫𝐫)
𝛼𝛼

� (11) 

 
where ρ(𝐫𝐫) is the electronic density, {ρα(𝐫𝐫)} is the set of nuclear densities associated with the electrolyte 
solution, 𝑉𝑉(𝐫𝐫) and 𝑉𝑉𝛼𝛼(𝒓𝒓) are the external potential due to the nuclei of the solute and the ones applied to the 
liquid components, respectively. The �̃�𝐴𝐽𝐽𝐽𝐽𝐽𝐽𝑇𝑇[ρ(𝐫𝐫), {ρα(𝐫𝐫)}] is a universal functional independent of 𝑉𝑉(𝐫𝐫) and 
𝑉𝑉𝛼𝛼(𝐫𝐫); it includes the contributions of the interaction between solute and the electrolyte solution. As the solute 
is treated using the electronic DFT in the Kohn-Sham Mermin formalism, this last functional can be written as: 
 

A�𝐽𝐽𝐽𝐽𝐽𝐽𝑇𝑇[ρ(𝐫𝐫), {ρα(𝐫𝐫)}]

= ��
𝑓𝑓𝑖𝑖
2
�𝑑𝑑𝒓𝒓|∇𝜓𝜓𝑖𝑖(𝒓𝒓)|2 − TS(𝑓𝑓𝑖𝑖)�

𝑖𝑖

+ EH[ρ(𝐫𝐫)] + EXC[ρ(𝐫𝐫)]

+ A�𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑[ρ(𝐫𝐫), {ρα(𝐫𝐫)}] 

(12) 
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where EH and EXC are the functionals containing the Coulombic interactions between electrons and nuclei 
and the exchange-correlation functional, respectively. Here the entropy S, has the independent particle form 
S(f) = −𝑓𝑓 ln(f) − (1 − f) ln(1 − f)  and the occupations are given by the Fermi distribution:  
 

𝑓𝑓𝑖𝑖 =
1

1 + exp �𝜀𝜀𝑖𝑖 − μ
T �

 (13) 

 
where 𝜀𝜀𝑖𝑖 are the eigenvalues of the Kohn-Sham equations. The A�𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑[ρ(𝐫𝐫), {ρα(𝐫𝐫)}] functional depends on the 
average densities of the nuclei of the solvent and it also contains the solute-electrolyte interactions related to 
the average electron density and average solvent densities.  

There are different approaches to treat the term A�𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 . The first approximation consists of treating only 
the solute quantum mechanically; in this way, the average densities of the solvent nuclei are obtained from a 
formalism based on classical mechanics. There is a series of approximations involving various levels of 
treatment for the solvent ranging from density functional models for liquids to continuous solvent models. In 
this review only results obtained by continuous solvent models are considered. 

Continuous Solvent Model. The effects of the solvent can be treated explicitly, implicitly or in a 
combination of both.  In the case of treating them explicitly, a detailed description of the solvent needs the 
inclusion of several of its molecules in the calculation, however this procedure has its limitations since each 
explicit water molecule adds degrees of freedom making it more computationally demanding. With the purpose 
in mind of reducing the computational costs, several approaches have emerged to describe the solvent implicitly. 
To delve into the specifics of the methods and formulations, readers are encouraged to refer to the review 
articles covering this topic.[54-57] 

The Polarizable Continuum Model (PCM). This model comprises simplified theories that consider 
the interactions between the solute and the liquid by placing the electronic system immersed in a continuous 
dielectric without structure, simulating solvation effects by generating a cavity whose shape and size can be 
described in various ways. Within the cavity, the solute's charge distribution polarizes the continuum, which in 
turn redistributes the solute's charge.[38,56]  

In the context of the JDFT, the solvent model can be defined by approximating the free energy 
functional of the solvated electronic system as follows:  
 

�̃�𝐴𝐽𝐽𝐽𝐽𝐽𝐽𝑇𝑇[ρ(𝐫𝐫), {ρα(𝐫𝐫)}] = AHKM[ρ(𝐫𝐫)]�������
solute

+ Φliq[{ρα(𝐫𝐫)}]���������
liquid/electrolyte

+ ΔA[ρ(𝐫𝐫), {ρα(𝐫𝐫)}]�����������
coupling

 (14) 

 
where AHKM[ρ(𝐫𝐫)] is the Hohenberg-Kohn-Mermin functional[29,30] of the solute depending on the electron 
density, Φliq[{ρα(𝐫𝐫)}] is the exact free energy functional of the liquid that depends on the average densities of 
the solvent nuclei, and ΔA[ρ(𝐫𝐫), {ρα(𝐫𝐫)}] is the free energy that captures the solute-solvent interactions. These 
can be approximated in different ways. Under the Kohn-Sham formulation,[58] the first term on the right-hand 
side can be approximated with different levels of theory for the exchange and correlation energy. For the second 
term, a classical density functional for liquids can be employed, and the last term can be separated by identifying 
contributions attributed to effects such as the mean-field electrostatic interaction and the ones dominated by 
electronic repulsion and dispersion. The A𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑  functional can be defined as the sum of these last two terms: 
 

𝐴𝐴𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑[ρ(𝒓𝒓)] ≡ Φ𝑑𝑑𝑖𝑖𝑙𝑙[{ρα(𝐫𝐫)}] + ΔA[ρ(𝐫𝐫), {ρα(𝐫𝐫)}] (15) 
 
             One can rewrite this functional to distinguish the different contributions: 
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A𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑[ρ(𝐫𝐫)] = 𝐴𝐴𝜀𝜀[scav(𝐫𝐫), 𝜀𝜀(𝐫𝐫)] + 𝐴𝐴κ[scav(𝐫𝐫), {𝜌𝜌α(𝐫𝐫)}]

+ �𝑑𝑑𝐫𝐫�𝑑𝑑𝐫𝐫′
𝜌𝜌𝑑𝑑𝑖𝑖𝑙𝑙(𝐫𝐫′)
|𝐫𝐫 − 𝐫𝐫′|

�𝜌𝜌𝑑𝑑𝑑𝑑(𝐫𝐫) +
𝜌𝜌𝑑𝑑𝑖𝑖𝑙𝑙(𝐫𝐫)

2
�+ 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐[scav(𝐫𝐫)]

+ 𝐴𝐴𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑[scav(𝐫𝐫)] 

(16) 

 
where 𝐴𝐴ε[scav(𝐫𝐫), 𝜀𝜀(𝐫𝐫)] represents the free energy functional  that captures the dielectric response 
corresponding to the electrostatic interaction of a fluid composed of neutral molecules, while 
𝐴𝐴κ[scav(𝐫𝐫), {ρα(𝐫𝐫)}] represents the contribution to the free energy from the electrolyte ions if they are present 
in the solution. The densities of the solvent molecules and ions are modulated by the function determining the 
cavity, scav(𝐫𝐫), which in turn is determined by the electronic density. The third term on the right-hand side of 
the equation is the mean-field electrostatic interaction of the liquid's bond charge, 𝜌𝜌𝑑𝑑𝑖𝑖𝑙𝑙(𝐫𝐫), with itself and with 
the total charge density of the electronic system, 𝜌𝜌𝑑𝑑𝑑𝑑(𝐫𝐫), where 𝜌𝜌𝑑𝑑𝑖𝑖𝑙𝑙(𝐫𝐫) = 𝜌𝜌𝜀𝜀(𝐫𝐫) + 𝜌𝜌𝜅𝜅(𝐫𝐫) is the sum of the 
contribution from the charge associated with the dielectric response, 𝜌𝜌𝜀𝜀(𝐫𝐫), and the ionic contribution, 𝜌𝜌𝜅𝜅(𝐫𝐫), 
whereas 𝜌𝜌𝑑𝑑𝑑𝑑(𝐫𝐫) = ρ(𝐫𝐫) + 𝜌𝜌𝑛𝑛𝑛𝑛𝑐𝑐(𝐫𝐫) is the sum of the electronic density and the density of the solute nuclei, 
respectively. The last two terms of the equation depend on the cavity function and capture the effects of 
cavitation, 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐[scav(𝐫𝐫)], and dispersion, 𝐴𝐴𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑[scav(𝐫𝐫)], of the solute-solvent interaction. 

The PCM model, in its linear response approximation, considers the effects of ionic and dielectric 
responses of the liquid to be linear and local, so that the dipole moment of the solvent molecule, ρmol, interacting 
with the total electrostatic potential ϕ(𝐫𝐫), is much smaller than the temperature ρmol|∇ϕ(𝐫𝐫)| ≪ kB𝑇𝑇 and that 
the ionic response is approximately linear when 𝑍𝑍|∇ϕ(𝐫𝐫)| ≪ kB𝑇𝑇, where Z is the charge of the ion and kB is 
the Boltzmann constant. Thus, we can write the following expression:  
 

𝐴𝐴𝜀𝜀 + 𝐴𝐴𝜅𝜅 ≈
1
4π

�d𝐫𝐫 scav(𝐫𝐫) �(εb − 1)
|∇ϕ(𝐫𝐫)|2

2
+ κ2

ϕ2(𝐫𝐫)
2

� (17) 

 
              with the corresponding bound charge density,  
 

𝜌𝜌𝑑𝑑𝑖𝑖𝑙𝑙(𝐫𝐫) =
1
4π

�(εb − 1)∇ ⋅ �scav(𝐫𝐫)∇ϕ(𝐫𝐫)� − κ2scav(𝐫𝐫)ϕ(𝐫𝐫)� (18) 
 

where 𝜅𝜅 = �4π∑Ni Zi2/T is the inverse of the Debye screening length in vacuum.  
The Euler-Lagrange equation for this functional, when simplified under linear response conditions 

with respect to the independent variable ϕ(𝐫𝐫), resembles the modified Poisson-Boltzmann equation, (or 
alternatively, the Helmholtz equation in scenarios involving electrolytes where 𝜅𝜅 does not equal zero) 
 

∇2ϕ(𝐫𝐫) + (εb − 1)∇ ⋅ �scav(𝐫𝐫)∇ϕ(𝐫𝐫)� − κ2scav(𝐫𝐫)ϕ(𝐫𝐫) = −4𝜋𝜋𝜌𝜌𝑑𝑑𝑑𝑑(𝐫𝐫) (19) 
 

Finally, taking the solution to the electrostatic potential from this last equation and making 
substitutions, we get the equilibrium value of the Adiel functional in the linear response limit, 
 

A𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑[scav(𝒓𝒓),ϕ(𝒓𝒓)]
= 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐[scav(𝒓𝒓)] + 𝐴𝐴𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑[scav(𝒓𝒓)]

+
1
2
�𝑑𝑑𝒓𝒓𝜌𝜌𝑑𝑑𝑑𝑑(𝒓𝒓)�𝜙𝜙(𝒓𝒓) −�𝑑𝑑𝒓𝒓′

𝜌𝜌𝑑𝑑𝑑𝑑(𝒓𝒓′)
|𝒓𝒓 − 𝒓𝒓′|

� 
(20) 

 
Therefore, under this approximation, A𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑  is a functional of the total electrostatic potential and the 

cavity shape function. In general terms, the above description corresponds to a PCM that includes the effects 
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of an electrolyte. The inclusion of the ionic screening, 𝜅𝜅 ≠ 0, define an unambiguous point of reference for the 
eigenvalues, consequently any solvent model with this characteristic defines a practical zero for all the systems 
treated. This opens the possibility of direct comparison of eigenvalues between different systems.  

CANDLE model. One of the most successful PCM models used in the context of the GCDFT theory 
applied to electrochemistry problems is called CANDLE. This solvent model has the capability to describe the 
solvation energy for positive and negative charged systems, a characteristic quite appealing for treating 
electrochemical processes. Also, CANDLE describes appropriately cavitation free energies for solutes of 
positive, negative and zero curvature: invaginations, droplets, and planar interfaces. One key feature of this 
solvent model is the use of a finite thickness shell as the cavity border controlled by a form factor. Thus, the 
transition from the solute to the solvent is not sharp; in addition, the distance of the border crust with respect to 
the solute is adjusted according to the value of the electric field generated by the total density of the solute along 
the direction of the gradient of the electron density; as a consequence the shell position is different for anionic 
than for cationic regions. This extra adaptability of the solvent model is responsible for giving the same accuracy 
for solvation energies of cationic and anionic solutes, an important property to describe oxidation and reduction 
electrochemical processes with equal quality. 

The CANDLE model builds upon the SALSA[31] solvation model (Spherically Averaged Liquid 
Susceptibility), with some modifications to the definition of the cavity shape function and the dispersion 
contribution. In the case of CANDLE the cavity shape function is  
 

scav(𝒓𝒓) =
1
2

erfc ln �
𝑍𝑍𝑐𝑐𝑐𝑐𝑑𝑑  𝜌𝜌(𝒓𝒓)

𝜌𝜌𝑐𝑐
𝑑𝑑𝑒𝑒𝑒𝑒 � (21) 

 
where �̅�𝜌(𝒓𝒓) is the convolution of the electron density of the solute, ρ(𝐫𝐫) , and a spherical model of the molecular 
electron density of the solvent, 
 

𝑤𝑤𝑑𝑑𝑖𝑖𝑙𝑙(𝒓𝒓) ≡
1

�𝜎𝜎𝑑𝑑𝑖𝑖𝑙𝑙√2𝜋𝜋�
3 exp

−𝑟𝑟2

2𝜎𝜎𝑑𝑑𝑖𝑖𝑙𝑙2
 (22) 

 
 𝑍𝑍𝑐𝑐𝑐𝑐𝑑𝑑 is the number of electrons of the solvent molecule and 𝜎𝜎𝑑𝑑𝑖𝑖𝑙𝑙  is adjusted so that the width of the 
gaussian function is related to the effective van der Waals radius of the solvent molecule. The quantity 𝜌𝜌𝑐𝑐

𝑑𝑑𝑒𝑒𝑒𝑒  
depends on the electric field associated to the total electron density, 𝜌𝜌𝑑𝑑𝑑𝑑(𝐫𝐫) = ρ(𝐫𝐫) + 𝜌𝜌𝑛𝑛𝑛𝑛𝑐𝑐(𝐫𝐫) , and on an 
adjustable parameter, 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐   , that controls the differences between positive and negative regions of the solute. 
According to Eq. 21 the border between solute and solvent is not a surface but a crust where the width 
depends on the convolution density, �̅�𝜌(𝒓𝒓), and the distance to the solute is fixed by 𝜌𝜌𝑐𝑐

𝑑𝑑𝑒𝑒𝑒𝑒  . 
The cavity shape function described above is used directly to evaluate the dispersion contribution to 

solute-solvent interaction according to the equation: 
 

𝐴𝐴𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑[scav(𝒓𝒓)] = −�𝐶𝐶6𝑑𝑑𝑒𝑒𝑒𝑒𝑁𝑁𝑏𝑏𝑛𝑛𝑑𝑑𝑏𝑏��𝑑𝑑𝒓𝒓�𝑤𝑤𝑑𝑑𝑖𝑖𝑙𝑙 ∗ scav�(𝒓𝒓)
𝑖𝑖

×
�𝐶𝐶6𝑖𝑖

|𝑹𝑹𝒊𝒊 − 𝒓𝒓|6 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑 �
|𝑹𝑹𝒊𝒊 − 𝒓𝒓|
𝑅𝑅0𝑖𝑖

� 
(23) 

 
where 𝐶𝐶6𝑖𝑖 and 𝑅𝑅0𝑖𝑖 are the parameters of the DFT-D2 method of Grimme[59] for the ith atom of the solute at 
position 𝐑𝐑𝐢𝐢, and 𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑 is the short-range damping function. 𝑁𝑁𝑏𝑏𝑛𝑛𝑑𝑑𝑏𝑏 is the bulk number density of the solvent. To 
represent the solvent and generalize to non-spherical molecules, a distribution of polarizable oscillators given 
by 𝑤𝑤𝑑𝑑𝑖𝑖𝑙𝑙(𝐫𝐫) is employed, with �𝐶𝐶6𝑑𝑑𝑒𝑒𝑒𝑒 an empirical parameter representing an effective dispersion coefficient, 
and scav(𝐫𝐫) is the function that modulates this distribution.  The notation �𝑤𝑤𝑑𝑑𝑖𝑖𝑙𝑙 ∗ scav�(𝒓𝒓) indicates the 
convolution of the functions. 
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For the evaluation of the dielectric and ions response, it is defined a dielectric shape function that is 
modulated by a sort of effective electrostatic radius, 𝜂𝜂 , by using a convolution: 
 

𝑠𝑠𝜀𝜀′(𝒓𝒓) ≡ �𝑤𝑤𝜂𝜂 ∗ scav�(𝒓𝒓) (24) 

  

𝑤𝑤𝜂𝜂(𝒓𝒓) ≡
𝛿𝛿(𝑟𝑟 − 𝜂𝜂)

4𝜋𝜋𝜂𝜂2
 (25) 

 
The rationale of this change in the shape function is that the ions have a different average distance to 

the solute than the van der Waals interactions. Thus 𝜂𝜂 becomes an adjustable parameter in CANDLE model. 
This imply that 𝑠𝑠𝜀𝜀′(𝒓𝒓) substitutes scav(𝒓𝒓) in Eqs. 17-19. 

In CANDLE, the contribution of cavitation is expressed by 
 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐[scav(𝒓𝒓)] = 𝑝𝑝�𝑑𝑑𝒓𝒓�1 − �̅�𝑠(𝒓𝒓)�

+ 𝑁𝑁𝑏𝑏𝑛𝑛𝑑𝑑𝑏𝑏𝑇𝑇�𝑑𝑑𝒓𝒓�̅�𝑠(𝒓𝒓)�1 − �̅�𝑠(𝒓𝒓)� ��̅�𝑠(𝒓𝒓) + �1 − �̅�𝑠(𝒓𝒓)�𝛾𝛾

+ 15�̅�𝑠(𝒓𝒓)�1− �̅�𝑠(𝒓𝒓)� �
𝜎𝜎𝑏𝑏𝑛𝑛𝑑𝑑𝑏𝑏

𝑁𝑁𝑏𝑏𝑛𝑛𝑑𝑑𝑏𝑏𝑇𝑇𝑅𝑅𝑐𝑐𝑑𝑑𝑣𝑣
−

1 + 𝛾𝛾
6

�� 

(26) 

  
where 𝑝𝑝 and 𝑇𝑇 are the pressure and temperature of the fluid with 𝛾𝛾 ≡ ln 𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑇𝑇

𝑑𝑑𝑣𝑣𝑣𝑣𝑣𝑣
− 1, and 𝑝𝑝𝑐𝑐𝑐𝑐𝑑𝑑 the vapor pressure 

of the solvent. In this model, the term �̅�𝑠(𝐫𝐫) = (𝑤𝑤𝑐𝑐𝑑𝑑𝑣𝑣 ∗ scav)(𝐫𝐫) is a convolution of the cavity shape function 
with a spherical weighting function, 𝑤𝑤𝑐𝑐𝑑𝑑𝑣𝑣(𝐫𝐫) = 𝛿𝛿(𝑟𝑟 − 𝜎𝜎𝑐𝑐𝑑𝑑𝑣𝑣)/4𝜋𝜋𝜎𝜎𝑐𝑐𝑑𝑑𝑣𝑣2 , which employs the solvent radius as 
𝜎𝜎𝑐𝑐𝑑𝑑𝑣𝑣 = 2𝑅𝑅𝑐𝑐𝑑𝑑𝑣𝑣 where 𝑅𝑅𝑐𝑐𝑑𝑑𝑣𝑣 is the van der Waals radius of the solvent molecule. This form of the cavitation 
free energy has no adjustable parameters and describes the energy associated to the formation of a cavity with 
an arbitrary shape; and it only depends on experimental data specific to the solvent. For this reason, CANDLE 
has three parameters that must be specified per solvent: the charge asymmetry 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐 , the electrostatic radius 𝜂𝜂, 
and the effective dispersion coefficient �𝐶𝐶𝑑𝑑𝑒𝑒𝑒𝑒. 

The presence of ionic screening, 𝑘𝑘 ≠ 0, eliminates the indeterminacy of ϕ(𝐫𝐫) by an additive constant, 
establishing an absolute reference. It can be proven that the electrostatic potential decays to zero exponentially 
within the fluid far from the electronic system, where 𝜌𝜌𝑑𝑑𝑑𝑑 = 0, so the zero of ϕ(𝐫𝐫) is not arbitrary but corresponds 
to the energy of a solvated electron within the solvent. [37] The absolute reference of the electrostatic potential 
allows for an absolute reference for the eigenvalues of the Kohn-Sham electronic states. Likewise, this means that 
the chemical potential, 𝜇𝜇, fixed in calculations and used to determine electronic occupations, is also aligned with 
the same reference. Values can be placed on the same scale using the experimental value of the absolute position 
of the standard hydrogen electrode relative to the vacuum level, namely 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆 = −4.44 𝑒𝑒𝑉𝑉. In the case of 
CANDLE, a theoretical calibration performed by Sundararaman and colleagues[60] which involves contrasting 
theoretical and experimental values of zero-charge potentials for solvated metal surfaces gives a value of 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆 =
−4.66 𝑒𝑒𝑉𝑉. By using this value, one can align eigenvalues and chemical potentials, obtained using CANDLE as 
the model solvent, with respect to the standard hydrogen electrode potential. 
 
 
Quantum capacitance and softness of N-doped graphene within GCDFT 
 

In recent years graphene has been found to be a very promising capacitor due to its properties such as 
high surface area, high electrical conductivity, low resistance, high mechanical strength, and chemical stability. 
Despite the efforts of researchers to develop theoretical models to understand the capacitance properties of 
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graphene, the fundamental factors governing its increased reactivity and the impacts of nonmetallic heteroatom 
doping remain uncertain. The absence of a thorough theoretical framework that comprises an electrified 
interface, a solvent under electric field influence, charge transfer mechanisms, adsorption phenomena among 
others is a significant factor. In terms of the application of functionalized graphene in electrochemical 
capacitors, one of the most important properties is the capacitance of the material. The total capacitance of a 
solid-liquid interface depends on the intrinsic capacitance of the solid surface and on what is identified as the 
double layer capacitance of the liquid in the vicinity of the surface. For the case of graphene-electrolyte 
interface, the dominant quantity is the intrinsic capacitance identified with the quantum capacitance, (𝐶𝐶𝐽𝐽𝐷𝐷𝑆𝑆), a 
concept introduced by Luryi[61] which characterizes the conduction band's mobility in response to an applied 
potential, hence the capacitance was a feature of electronic devices, later becoming a relevant factor for 
elucidating the fundamental chemistry aspects of electrode-electrolyte capacitors at their interface. Hwang and 
colleagues introduced an approach to calculate the total capacitance (𝐶𝐶𝑇𝑇) by separately analyzing quantum 
capacitance and electric double layer capacitance (𝐶𝐶𝐽𝐽𝐷𝐷) on single-layer graphene.[62] Subsequently, Zhan and 
Jiang[63] studied the electronic structure of solvated few-layer graphene electrodes using JDFT within the grand 
canonical Kohn-Sham (GCKS) formalism. In that work they proposed a model of series capacitors and stated 
that employing the JDFT method would enable the separation and quantification of the dielectric contribution 
through a self-consistent electronic structure calculation for an electrode in contact with an implicit electrolyte.  
According to the Gouy-Chapman-Stern model,[64] the capacitance of the electrolyte component of a solid-
electrolyte interface can be divided into the Helmholtz (𝐶𝐶𝑆𝑆) layer and the diffuse (𝐶𝐶𝐽𝐽𝑒𝑒) layer contributions (See 
Fig. 4). To simplify matters, the combined Helmholtz and diffuse capacitances are often referred to as the 
electrolyte or double layer (1/𝐶𝐶𝐽𝐽𝐷𝐷 ≡ 1/𝐶𝐶𝑆𝑆 + 1/𝐶𝐶𝐽𝐽𝑒𝑒) capacitance. The Gouy-Chapman-Stern model provides an 
approximation for the 𝐶𝐶𝐽𝐽𝐷𝐷 term[64] and Monte Carlo simulations or classical molecular dynamics can yield a 
more comprehensive understanding of this contribution. [62,65,66] On the other hand, the contributions to total 
capacitance coming from the electrode can be divided into quantum capacitance, also known as DOS 
capacitance 𝐶𝐶𝐽𝐽𝐷𝐷𝑆𝑆  and the dielectric capacitance 𝐶𝐶𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 . Thus, the total capacitance of a series capacitor model 
can be defined as 
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 (27) 

 
The quantum capacitance is conventionally derived from the rigid-band (RB) approximation:  
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where 𝑔𝑔(𝐸𝐸) and 𝐸𝐸𝑒𝑒𝑒𝑒 are the density of states and the Fermi level of the neutral electrode, respectively. Δ𝐸𝐸𝑒𝑒 is 
the shift in the Fermi level of the charged electrode resulting from the variation of the total change in the 
electrochemical potential of the electrons. Through Zhan and Jiang’s procedure, 𝐶𝐶𝐽𝐽𝐷𝐷𝑆𝑆  is obtained from GCKS 
calculations, where the number of electrons is an average, < 𝑁𝑁 >, and the natural variables are the chemical 
potential of the electron reservoir, 𝜇𝜇, the external potential, 𝑉𝑉(𝐫𝐫), and the temperature. In this protocol, a change 
in the chemical potential of the electrons, 𝜇𝜇, can be separated in three contributions: 1) a shift in the Fermi level, 
Δ𝐸𝐸𝑒𝑒; 2) a change in the electrostatic potential across the double layer, ΔΦ𝐽𝐽𝐷𝐷, which is induced by the charging 
process of the electrode surface; 3) and the change in the chemical potential resulting from the penetration of 
the electric field into the semiconductor or non-conductor surface (the screening of metallic surfaces avoid this 
effect), ΔΦ𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 . Consequently, the change in the chemical potential can be written as: 

 
Δ𝜇𝜇 = Δ𝐸𝐸𝑒𝑒 + ΔΦ𝐽𝐽𝐷𝐷 + ΔΦ𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 (29) 
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It is important to notice that in series capacitors a change in the charge is replicated in each capacitor, 
therefore, the inverse of total capacitance can be split in contributions coming from each part of the total change 
in 𝜇𝜇. In Zhan and Jiang’s model,[63] Δ𝐸𝐸𝑒𝑒 corresponds to 1

𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷
 and the dielectric and double layer terms are 

contained in a nonquantum term, ΔΦ𝑁𝑁𝑁𝑁 = ΔΦ𝐽𝐽𝐷𝐷 + ΔΦ𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 . As a result, their model contains two terms, 
 
1
𝐶𝐶𝑇𝑇

=
1

𝐶𝐶𝐽𝐽𝐷𝐷𝑆𝑆
+

1
𝐶𝐶𝑁𝑁𝑁𝑁

 (30) 

                                               
that can be evaluated from a GCKS calculation of the solid-liquid interface using JDFT formalism.  

The relation of the inverse of capacitance with a DFT response quantity, chemical hardness, was 
pointed out as earlier as 1988 by Perdew[67]; and this idea was further developed by others. [68,69] In addition, 
in 1985 Yang and Parr, using the GCDFT formalism, introduced a relation between changes in electron density 
relative to the chemical potential and the density of states (DOS) in metals with a response function called 
chemical softness.[40] Later on, Cohen et al. [70-73] have enhanced this association between local softness and 
local density of states, proposing an extension of this concept to semiconductor systems. As global and local 
quantities, softness and hardness are inverse at zero temperature[28] and have been widely used as reactivity 
parameters.[26] Moreover, a relationship between local softness and measurable quantities has been 
emphasized; on the one hand, a connection with scanning tunneling microscopy (STM) images was established 
which widened the applicability of atomic resolution STM images in studying surface reactivity; [74] on the 
other hand, more recently, Szareck[75] pointed out that global chemical softness is directly proportional and 
approximate to the total capacitance,  
 

𝑇𝑇 ≅
𝐶𝐶𝑇𝑇
𝑒𝑒2

 (31) 

 
Since the total capacitance is the derivative of the electrode charge, 𝑒𝑒(< 𝑁𝑁 > −< 𝑁𝑁 >0) with respect 

to chemical potential, it can be converted into a derivative with respect to the applied potential, U, through the 
expression 𝜇𝜇 = 𝜇𝜇0 − 𝑒𝑒𝑒𝑒: 
 

𝐶𝐶𝑇𝑇 = 𝑒𝑒2
𝜕𝜕(< 𝑁𝑁 > −< 𝑁𝑁 >0)

𝜕𝜕𝜇𝜇
 (32) 

 
The rationale for this transformation is that the applied potential fixes the chemical potential of the 

electrons indicating that the electrode used to fix the potential acts as the electrons bath at a certain imposed 
chemical potential. Ochoa-Calle and colleagues[76] made a linkage between both methods to obtain quantum 
capacitance and softness using JDFT and CANDLE as implicit solvation model, to capture the charging process 
of the electrode by computing the curve < 𝑁𝑁 > vs 𝜇𝜇. They explored the relationship between capacitance and 
softness for pristine and N-substituted graphene structures (see Fig. 5) and defined a local total capacitance, 
alternative to the one proposed by Szareck,[75]  
 

𝑐𝑐𝑇𝑇(𝐫𝐫) ≡ 𝑒𝑒2𝑇𝑇(𝐫𝐫) (33) 
                                

They obtained that the rigid band approximation tends to overestimate quantum capacitance, especially 
in the pyridinic system, thereby reducing its impact on the total capacitance. With the model of series capacitors, 
they analyzed individually the  1

𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷
 and 1

𝐶𝐶𝑁𝑁𝑁𝑁
 terms for the three systems, finding that for graphene, both of these 

terms are different in all of the studied applied potentials; for the positively charged N-doped systems, the 
nonquantum shift is analogous to the displacement of the Fermi level, whereas for the negatively charged 
pyridinic system the most important contribution is the nonquantum shift. 
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They compared the total capacitance of the three systems studied in their work (see Fig. 6), where they 
obtain that the pyridinic system has the greatest 𝐶𝐶𝑇𝑇, establishing the relative order as pyridinic bond type > 
graphitic bond type > graphene bond type. The curves depicted in Fig. 6, through Eq. 31 can also be understood 
as the global softness of the electrode-electrolyte system as a function of 𝜇𝜇. The N-doped systems have their 
local maxima in the potential region where they are prone to donate electrons. Additionally, Eq. 33 introduces 
the opportunity to establish local contributions to the 𝐶𝐶𝑇𝑇. For instance, they show that for the applied potential 
where there is the maximum peak of capacitance in the pyridinic system, the entire surface gives rise to the 
electron donation, whereas the heteroatoms are the only ones that contribute at the applied potential window 
where the system accepts electrons. It is important to notice, that the definition of global and local softnesses 
imply to take the derivatives at constant external potential, namely constant geometry. In contrast the derivative 
that defines capacitance, Eq. 32, is not taken with this restriction; this is the reason so that Eq. 31 is only an 
approximation. One of the advantages of the series capacitor model is that one can distinguish the quantum 
from the non-quantum contributions and to quantify their relative values. This possibility is useful to understand 
the performance of different materials in contact with the same solvent model. 

 

 
Fig. 4. Schematic representation of an electric double layer with green and blue spheres indicating solvated 
cation and anion, respectively. 
 
 
 
 

 
Fig. 5. N-doped structures with 0 %, 3.1 % and 9.7 % relative concentrations for (a) graphene, (b) graphitic 
bond type and (c) pyridinic bond type, respectively. 
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Fig. 6.  Total capacitance of the three different N-doped models as a function of the applied chemical potential, 𝜑𝜑, 
referred to the chemical potential of zero charge, 𝜑𝜑𝑃𝑃𝑃𝑃𝐶𝐶 . Pristine graphene is also included as a point of reference. 
 
 
 
Electronic structure and redox properties of metallic oxides as a function of the 
chemical potential 
 

The advanced electrochemical oxidation processes (EAOPs)[77] are based on the generation of 
hydroxyl radicals, which exhibit high oxidative power and are capable of completely oxidizing organic 
contaminants to carbon dioxide and water. It is convenient because it operates close to standard ambient 
temperature and pressure, making it efficient for wastewater treatment. Boron-doped diamond (BDD) 
electrodes have proven effective in electrocombustion of organic compounds, achieving complete oxidation to 
CO2. However, its use is hindered by high costs. Metal oxides have emerged as viable alternatives for this 
purpose. Understanding the interaction between metal oxides and water is an ongoing research endeavor, driven 
not only by the practical applications where these interactions are important but also by the theoretical and 
experimental challenges associated with their accurate characterization.  

EAOP mechanism proposed by Comninellis[78] in acidic medium has as its first step the oxidation of 
water to form adsorbed hydroxyl radicals on the surface, according to the half reaction: 
 

𝑀𝑀 + 𝐻𝐻2𝑂𝑂 → 𝑀𝑀(⋅𝑂𝑂𝐻𝐻) + 𝐻𝐻+ + 𝑒𝑒− (34) 
 
where M denotes the metallic site on the anode surface. The theoretical study of Comninellis mechanism 
initiated at UAMI group focused on determining surface reactions including the adsorption energies but using 
surface models in which the solvent was only marginally treated. [79,80] Recently, Islas-Vargas and 
colleagues[81] employed JDFT to study the first step of the mechanism (Eq. 34) on three metallic oxide 
surfaces, PbO2, SnO2 and IrO2. These materials possess a common rutile-type structure and exhibit the most 
stable crystal face, the (110), which exhibits alternating rows of the unsaturated metal atom and bridging oxygen 
atoms (see Fig. 7). They carried out geometry optimizations using CANDLE as implicit solvation model, then 
they placed two explicit water molecules in the model slab to consider the hydrogen bonds established at the 
maximum coverage limit. In all three cases, the water molecules dissociated into OH on top of the metallic site 
and H bound to the bridging oxygen atom of the surface plane (see Fig. 8), as found in other works.[82]   

These three surfaces have diverse electronic behaviors. The density of states (DOS) of the slab models 
provides valuable understanding of the electronic properties of these metal oxides with two explicit water 
molecules. Specifically, it reveals that PbO2 exhibits a metallic behavior but with a limited number of electronic 
states around its Fermi level (Ef), as shown in Fig. 9(a). SnO2 behaves as a semiconductor, with its potential of 
zero charge 𝜇𝜇𝑧𝑧𝑐𝑐 positioned in the midpoint of an approximated 1.22 eV bandgap, as seen in Fig. 9(b). In contrast 
to PbO2, IrO2 is a metallic system with a high density of states around the Ef, as depicted in Fig. 9(c).  
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At fixed geometry, Islas-Vargas et al. performed single point calculations employing GCDFT, fixing 
𝜇𝜇 around the 𝜇𝜇𝑧𝑧𝑐𝑐 of each slab model. They evaluated the difference between the average number of electrons 
and the number of electrons of the neutral system (〈𝑁𝑁〉 − 𝑁𝑁0) as a function of the applied 𝜇𝜇 (Fig. 10(a)) and the 
change of < 𝑁𝑁 > with respect to the pplied chemical potential which represents the global softness (S) of the 
system (Fig. 10(b)) (see Eq. 4) 

All chemical potentials are expressed as relative values, denoted as 𝜇𝜇 − 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆, where 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆 represents the 
energy value of the standard hydrogen electrode (SHE) relative to the vacuum level, which serves as the reference; 
in the case of CANDLE solvation model[60] the value was calibrated as -4.66 eV.  Their results indicate that the 
two metallic systems present different responses before and after reaching their respective 𝜇𝜇𝑧𝑧𝑐𝑐. When even a slight 
shift in 𝜇𝜇 is applied, IrO2 surface becomes more negatively or positively charged compared to PbO2 which 
possesses a low density of states at Ef. Observing the global softness for these systems in Fig. 10(b), it suggests 
that the IrO2 surface presents a pronounced response when the applied chemical potential lies in the direction of 
electron gain, whereas the PbO2 surface presents equal propensity to either accept or donate electrons. In contrast, 
SnO2 behaves as a semiconductor, lacking any change in the average number of electrons around its 𝜇𝜇𝑧𝑧𝑐𝑐 (see Fig. 
10(a)), therefore presenting zero global softness until the applied 𝜇𝜇 surpasses the bandgap. 

Upon examining the alterations in the DOS at applied 𝜇𝜇 (Fig. 11), two significant changes in the 
electronic structure of these materials become apparent: a shift of the entire DOS and its deformation. In the 
metallic systems, PbO2 and IrO2 (Fig. 11(a) and Fig. 11(c)), the shift in DOS is notably more pronounced 
compared to the system with a bandgap, SnO2 (Fig. 11(b)), which exhibits a pronounced deformation rather 
than a substantial shift, once the 𝜇𝜇 applied is outside the bandgap. 

Islas-Vargas and colleagues[83] also investigated the chemical reactivity of these surfaces once an OH 
molecule was adsorbed, since these are the entities responsible for oxidizing organic molecules (R):[84] 
 

𝑀𝑀(⋅𝑂𝑂𝐻𝐻) + 𝑅𝑅 → 𝑀𝑀 + 𝑚𝑚𝐶𝐶𝑂𝑂2 + 𝑛𝑛𝐻𝐻2𝑂𝑂 + 𝐻𝐻+ + 𝑒𝑒− (35) 
              

They performed electronic structure calculations at fixed geometry using JDFT formalism and 
CANDLE as the implicit solvation model. Once optimized, they made single point calculations of the surfaces 
with an OH molecule at fixed 𝜇𝜇. The curve 〈𝑁𝑁〉 − 𝑁𝑁0 as a function of 𝜇𝜇 referred to the 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆 (Fig. 12(a)) indicates 
that these surfaces behave differently than those with two water molecules. In this case, all systems are metallic, 
and they exhibit a linear behavior in the potential region when 𝜇𝜇 < 𝜇𝜇𝑧𝑧𝑐𝑐 and undergo a change in slope when 
𝜇𝜇 > 𝜇𝜇𝑧𝑧𝑐𝑐. Both average number of electrons of the surfaces SnO2 and PbO2 with an OH molecule behave 
similarly in the applied potential window studied in their work. This can be explained by noting the similar 
characteristics of the electronic states associated with Sn and Pb, because they share common features as 
elements within the same group on the periodic table. Moreover, in accordance with a classification proposed 
by Comninellis,[78] PbO2 and SnO2 electrodes are categorized as “non active” materials, whereas IrO2 is 
considered as an “active” material. This can be observed in the global softness that is illustrated in Fig. 12(b). 
All systems exhibit constant softness when 𝜇𝜇 < 𝜇𝜇𝑧𝑧𝑐𝑐, indicating a constant trend of electron loss in that potential 
region. The peaks of S for all three surfaces are in the electron-gaining zone when the applied 𝜇𝜇 exceeds their 
respective 𝜇𝜇𝑧𝑧𝑐𝑐 values. The behavior of S for PbO2 and SnO2 surfaces display similar softness behaviors across 
the entire applied potential region, with peaks of similar values. In contrast, the IrO2 surface exhibits a lower 
local peak magnitude, occurring at an applied chemical potential of more than 1 eV higher than the other two 
surfaces. These results are consistent with experimental observations. Therefore, the overpotential for the 
oxygen evolution reaction is -1.52 for IrO2 and -1.90 eV for both SnO2 and PbO2 surfaces.[85]  This implies 
that the “non active” surfaces exhibit a maximum S at more negative potentials compared to the “active” 
surfaces, similarly to their oxygen evolution overpotential, which is lower in eV.  

To understand the regions involved in charge transfer during chemical potential changes they evaluated 
the local softness, 𝑇𝑇(𝐫𝐫).  

They found that in the case of the “non active” materials when the applied 𝜇𝜇 exceeds the 𝜇𝜇𝑧𝑧𝑐𝑐, the local 
softness is predominantly located over the adsorbed OH molecule and the two oxygen atoms in the bridge 
position. As 𝜇𝜇 rises, there is an increase in the average number of electrons leading to a greater negative charge 
on the surface and an increase in 𝑇𝑇(𝐫𝐫). However, even with the ongoing entry of electrons to the surface, the 
𝑇𝑇(𝐫𝐫) decreases indicating a loss in the ability to gain electrons on the OH molecule and on the O atoms in bridge 
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positions. Similarly, when 𝜇𝜇 is greater than its 𝜇𝜇𝑧𝑧𝑐𝑐, the local softness of the “active” material resides on the O 
atoms in bridge positions and on the O atom of the adsorbed OH. Nevertheless, with the increasing applied 𝜇𝜇 
the surface gains more electrons and the 𝑇𝑇(𝐫𝐫) also increases until it reaches a certain value, at which it begins 
to decrease at a slower pace than the “non active” materials. The less pronounced decrease in local softness for 
the “active” material indicates that there are still available states on the surface O atoms as well as on the OH 
molecule to continue gaining electrons, in contrast to the “non active” surface. 

Absolute qualitative redox scale. Theoretically, it is possible to split the total redox process and to 
study only one half-reaction:  
 

𝑋𝑋𝑑𝑑 → 𝑋𝑋𝑑𝑑+𝜈𝜈 + 𝜈𝜈𝑒𝑒− (36) 
                                           
where m and 𝜈𝜈 are integers with 𝜈𝜈 >  0. Thus, in order to evaluate the oxidizing power of an electrode in relation 
to a particular electrochemical reaction, Islas-Vargas and colleagues[83] proposed a scale for the relative 
ordering of these surface materials. This scale can be employed as a tool to directly correlate with experimental 
measurements, expressed in Volts relative to the SHE, and to predict potential redox reactions. They took the 
works by Sprik et al.[1,2] who introduced a model for calculating reduction potentials in a grand canonical 
formulation where they only consider two states of the system of interest. By conducting molecular dynamics 
simulations, they take the average ground states while considering structural changes caused by thermal 
fluctuations. This methodology, termed numerical titration, involves iteratively adjusting 𝜇𝜇 to determine its 
value at which the system exhibits half of its maximum fractional charge 𝜇𝜇1/2 from a sigma-shaped curve.  

In the scheme proposed by Islas-Vargas et al.,[83] the equilibrium geometries of electronic systems in 
their respective ground states are employed. This enables calculations with fixed geometry while varying the 
chemical potential within the electrochemical window of experimental interest. They studied the reduction half-
reaction of 𝑂𝑂𝐻𝐻, 
 

𝑂𝑂𝐻𝐻 + 𝑒𝑒− → 𝑂𝑂𝐻𝐻− (37) 
                                            
plotting the < 𝑁𝑁 > as a function of 𝜇𝜇 and fitting this behavior to the function 𝑓𝑓(𝑥𝑥) = �1 + 𝑒𝑒−𝑐𝑐(𝑥𝑥−𝑏𝑏)�

−1
 as 

shown in Fig. 13. The calculated value of the reduction potential for 𝑂𝑂𝐻𝐻/𝑂𝑂𝐻𝐻− is -1.42 eV, which deviates 480 
meV from the experimental measure.[86] The deviation of theoretical values from the experimental ones is of 
the same order of magnitude as the one obtained by Sprik´s group. To test if the relative order of the redox 
potentials obtained with this approximation correlate with the experimental behavior, the group at UAMI used 
this approximation to determine the reduction potential 𝜖𝜖𝑒𝑒𝑑𝑑𝑑𝑑 and the oxidation potential 𝜖𝜖𝑒𝑒𝑥𝑥 of surfaces with 
adsorbed OH, by considering the following half-reactions: 
 

𝑀𝑀(𝑂𝑂𝐻𝐻)< 𝑁𝑁 > +𝑒𝑒− → 𝑀𝑀(𝑂𝑂𝐻𝐻)< 𝑁𝑁 + 1 >− (38) 
 
and 
 

𝑀𝑀(𝑂𝑂𝐻𝐻)< 𝑁𝑁 >→ 𝑀𝑀(𝑂𝑂𝐻𝐻)< 𝑁𝑁 − 1 >++ 𝑒𝑒− (39) 
 
where 𝑀𝑀(𝑂𝑂𝐻𝐻)< 𝑁𝑁 >, 𝑀𝑀(𝑂𝑂𝐻𝐻)< 𝑁𝑁 + 1 >− and 𝑀𝑀(𝑂𝑂𝐻𝐻)< 𝑁𝑁 − 1 >+ are the states of the metallic oxide surface 
with an OH molecule with N, N+1 and N-1 electrons, respectively. As in the 𝑂𝑂𝐻𝐻/𝑂𝑂𝐻𝐻− case, they fitted the data of 
the < 𝑁𝑁 > −𝑁𝑁0 = 𝑓𝑓(𝜇𝜇) curves (Fig. 12(a)). Additionally, they tried an alternative approach that involves 
determining the Helmholz free energy at fixed values of electron number (N=N+1/2 or N=N-1/2). This approach 
entails obtaining the Helmholz free energy at fractional electron numbers using the same Fermi-Dirac smearing 
function, rather than the grand potential. This procedure offers a more affordable alternative and enables the 
examination of a broader range of systems. The potentials derived through both methods are presented in Table 1; 
the qualitative trends of the data of the table are in agreement with the experimental results[87,88] a fact that supports 
the idea of using this qualitative scale to have a relative classification of the redox properties of solid-liquid interfaces. 
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Table 1. Oxidation potential (𝜖𝜖𝑒𝑒𝑥𝑥) and reduction potential (𝜖𝜖𝑒𝑒𝑑𝑑𝑑𝑑) referred to the standard hydrogen electrode, 
in eV, for the MO2(OH) (where M = Pb, Sn, Ir) determined by two methods, I: interpolating the curves of 〈𝑁𝑁〉 −
𝑁𝑁0 = 𝑓𝑓(𝜇𝜇) in the -0.5 and 0.5 values and II: fixing N to be N+0.5 or N-0.5, respectively. 

 
 MO2(OH) 

Method Pb Sn Ir 

𝜖𝜖𝑒𝑒𝑥𝑥 
I -3.29 -3.37 -2.24 

II -3.29 -3.37 -2.24 

𝜖𝜖𝑒𝑒𝑑𝑑𝑑𝑑 
I -2.37 -2.49 -0.49 

II -2.39 -2.46 -0.92 
 
 

 
Fig. 7. Schematic representation of the (110) MO2 surface, where M = Pb, Sn, and Ir, with adsorbed dissociated 
water molecules. I unsaturated M atom where OH is adsorbed, II oxygen in bridge position, III H atom bound 
to the O atoms in bridge position and IV adsorbed OH molecule. 
 
 
 

 
Fig. 8. Top view of the slab models with two explicit water molecules after geometry optimization with the 
CANDLE implicit solvation model and 1M of electrolyte, (a) PbO2, (b) SnO2 and (c) IrO2. Solid black lines delimit 
the unit cell. 
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Fig. 9. Density of states per unit cell of the metal oxide surface models with two dissociated water molecules. 
The solid orange line and the dotted brown line represent the potential of zero charge (𝜇𝜇𝑧𝑧𝑐𝑐) and the Fermi level 
(𝐸𝐸𝑒𝑒) of each slab, respectively. 
 
 
 

 
Fig. 10. (a) Average number of electrons difference, 〈𝑁𝑁〉 − 𝑁𝑁0, at applied chemical potential in eV, where 𝑁𝑁0 
is the number of electrons of the neutral system and (b) Softness in a.u. as a function of applied chemical 
potential, for the MO2 (with M = Pb, Ir, and Sn) slab models with two explicit water molecules 
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Fig. 11.  Density of states per unit cell of the (a) PbO2, (b) SnO2 and (c) IrO2 slab model with two explicit 
dissociated water molecules at applied chemical potential (𝜇𝜇) in eV. The orange solid line, dotted red line, and 
dotted brown line indicate 𝜇𝜇𝑧𝑧𝑐𝑐, 𝜇𝜇, and the Fermi level, respectively. 
 
 
 

 
Fig. 12. (a) Average number of electrons difference, 〈𝑁𝑁〉 − 𝑁𝑁0 , at applied chemical potential in eV, where 𝑁𝑁0 
is the number of electrons of the neutral system and (b) Softness in a.u. as a function of applied chemical 
potential, for the MO2 slab models with an OH molecule (with M = Pb, Ir, and Sn). 
 
 
 

 
Fig. 13. Average number of electrons difference, 〈𝑁𝑁〉 − 𝑁𝑁0 , at applied chemical potential (𝜇𝜇), in eV, where 𝑁𝑁0 
is the number of electrons of 𝑂𝑂𝐻𝐻. Solid yellow line is the fitted function 𝑓𝑓(𝑥𝑥) = �1 + 𝑒𝑒−𝑐𝑐(𝑥𝑥−𝑏𝑏)�

−1
 with a = 

118.529 and b = -1.42318. Dotted green line indicates the gain of a half average electron. 
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Conclusions 
 

This review is focused on a significant area of research: the application of electronic structure calculations 
and reactivity concepts within DFT to analyze electrochemical processes. In particular, it was shown that the use 
of local softness as a probe to follow redox processes in cathode materials is an alternative to the standard use of 
projected density of states and simplifies the comparison of different materials without ambiguity. The 
development of quantum capacitance calculational procedures enhanced our understanding of electrode-
electrolyte interfaces, particularly in materials like graphene; the connection between capacitance and softness 
opens the possibility of determining regional capacitances which facilitate the analysis of the impact of surface 
characteristics (functionalization, vacancies, etc.) to the global capacitance that is an experimentally measured 
quantity. Additionally, our research group, employing the grand canonical ensemble, has shed light on the surface 
properties of metallic oxides utilized in advanced electrochemical oxidation processes and their relative chemical 
reactivity order. This provides insights into possible redox reactions with organic compounds, which could 
facilitate the modification of these materials for wastewater treatment. Even though the Grand Canonical Finite 
Temperature Density Functional Theory is an exact theory, the following information must be considered. Similar 
to DFT, to obtain the Grand Potential in Eq. 2, the Kohn-Sham-Mermin formalism can be used to describe a 
system of interacting particles by introducing a fictitious system of non-interacting particles. Until this point, using 
this approach we still can get an exact solution for the Grand Potential, but in the way this theory is implemented 
in JDFTx these approximations are made: i) the entropic contribution to the Helmholtz energy is not exact because 
only the entropy of a system of non-interacting particles is included, the importance of this contribution and how 
it can be obtained is a current research topic [89-92]; ii) the exchange correlation functionals used are not exact, 
so the obtained results depend on the quality of the approximation and, also related to the unknown entropic 
contribution, the so called ground state approximation is used, i.e. the exchange-correlation free energy, that 
depends on the temperature, is approximated by its ground-state value[91]; iii) the solvation model used in 
JDFT[93]. Considering these issues in our works, we are aware of the limitations of PBE functional for describing 
the studied systems, that is why we usually prefer to analyze trends and not specific values. Analyzing the effect 
of a particular density functional approximation (DFA) is not straight forward in this formalism because the solvent 
model might need to be recalibrated for that DFA using experimental values. In summary, there is room for 
improvement on each one of the mentioned problems and this only reflects the great complexity involved in the 
study of electrochemical interfaces. Overall, the integration of theoretical approaches with solvent models and 
applied chemical potential continues to advance our comprehension of electrochemical processes and their 
correlation with experimental data, laying the groundwork for the design of more efficient electrode materials and 
the development of improved energy storage technologies. 
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	The application of electronic structure calculations for describing electrochemical processes has a long history and there are many theoretical efforts to obtain data and develop concepts to understand electrochemical phenomena.[1-24] In this context,...
	Due to the complexity and size of the models needed to make an appropriate description of electrochemical systems, the most widely used methods in these applications are those based on DFT;[25] and ab-initio molecular dynamics based on DFT has been pa...
	DFT is not only a good calculational tool, alternative to the wave function approaches, but also, it is a powerful framework to connect chemical concepts with response properties defined within its mathematical structure;[26] along this research line ...
	In recent years, there has been an effort between colleagues of the theoretical chemistry and electrochemistry groups in the Chemistry Department at the Universidad Autónoma Metropolitana, Unidad Iztapalapa (UAM-I) to collaborate for studying some as...
	In general, an electrochemical process involves a charge transfer; and this transfer can involve two different kinds of charged particles, electrons and/or ions. For this reason, in the simulation of such chemical events, it is necessary to treat the ...
	Grand Canonical DFT Formalism
	In the Grand Canonical Finite Temperature Density Functional Theory (GCDFT) [29,30] the Grand Potential, Ω,𝜇,𝑉(𝒓),𝑇. , has the central role instead of the Total Energy, 𝐸,𝑁,𝑉(𝒓).. The Grand Potential has the external potential, V(r), the chemi...
	In this notation 𝜇 and ,𝜌(𝒓). are the chemical potential of the electrons reservoir (bath) and the ensemble average electron density respectively; and ,𝑁. is the ensemble average of the number of electrons, ,𝑁.=,,𝜌(𝒓).𝑑𝒓. . By identifying the...
	That is the Legendre transformation of 𝐴 with respect to ,𝑁.. By this transformation there is an implicit formal change from the dependence of 𝐴 on ,𝑁. to a dependence on 𝜇. Eq. 2 is a formal definition of the Grand Potential in the context of th...
	According to Eq. 2, in the GCDFT any change in the grand potential in terms of its natural variables at constant temperature is given by
	Within the formalism outlined above the concept of chemical softness was developed as global, local and non-local quantities:[28,40]
	The equality in Eq. 5 is a Maxwell relation obtained from Eq. 3. By using Eqs. 3-5, a change in the average number of electrons is written as
	As one may conclude by analyzing Eq. 7, global, 𝑆, and local 𝑆(𝒓) softness are reactivity parameters related to the capability of the system to perform electron transfer. They can be related to fluctuations in the number of electrons and the electr...
	Local softness to predict oxygen evolution reactions in alkali-ion batteries
	Redox properties of active materials are fundamental to understanding the performance of alkali-ion batteries. Electrons flow between the positive and the negative electrodes during the charge and discharge processes while the alkali ions are intercal...
	where 𝑆,𝒓. is the local softness, 𝜇 is the chemical potential, and  𝑔,𝒓,𝜀,𝜇. is the local density of states. It should be remembered that the change in the electron density 𝜌,𝒓., while changing 𝜇, is evaluated at constant external potential ...
	The sign of the change in the chemical potential ∆𝜇 determines if the system is gaining or losing electrons. ∆𝜇 is selected to account for the loss or gain of one electron, according to the next equation:
	where the integral over 𝒓 is done in the unit cell volume, Ω. As in this case the processes to analyze are in bulk, the influence of the solvent is not included.
	The local softness computed for LiFePO4 under the conditions described above is shown in Fig. 2. As can be seen from that figure, the yellow surfaces that represent the local softness lie over the iron atoms indicating that if one tries to remove an e...
	Fig. 1. Schematic representation of the components of an alkali ion battery, the intercalation and deintercalation processes that occur during the charge and discharge of the battery and the two possible scenarios where the ligands are involved in the...
	Fig. 2. Local softness 0.354 a.u. isosurface plot for LiFePO4. The S(r) isosurface is shown in yellow. This figure is not part of the governing open access license but has been reproduced with permission from Springer Nature Customer Service Centre Gm...
	Fig. 3. Local softness 0.354 a.u. isosurface plots for Li2CuO2(left) and LiCuO2 (right). The S(r) isosurfaces are shown in yellow. This figure is not part of the governing open access license but has been reproduced with permission from Springer Natur...
	Joint Density Functional Theory
	In electrochemical experiments, solvents are involved in stabilizing and allowing the movement of the ions between electrodes, modifying  the thermodynamics and kinetics of the reactions taking place on the electrodes [51] or affecting properties like...
	The Joint Density Functional Theory(JDFT) [53]  formalism is designed to treat electrochemical systems from the perspective of solid-state methods that use periodic conditions. It provides a framework where the system is separated into a solute, this ...
	The variational principle associated to this theory, corresponds to the minimization of the Helmholtz free energy, A:
	where ρ,𝐫. is the electronic density, {,ρ-α.(𝐫)} is the set of nuclear densities associated with the electrolyte solution, 𝑉,𝐫. and ,𝑉-𝛼.,𝒓. are the external potential due to the nuclei of the solute and the ones applied to the liquid component...
	where ,E-H. and ,E-XC. are the functionals containing the Coulombic interactions between electrons and nuclei and the exchange-correlation functional, respectively. Here the entropy S, has the independent particle form S,f.=−𝑓,ln-,f..−,1−f.,ln-,1−f.....
	where ,𝜀-𝑖. are the eigenvalues of the Kohn-Sham equations. The ,,A.-𝑑𝑖𝑒𝑙.,ρ,𝐫.,,,ρ-α.,𝐫... functional depends on the average densities of the nuclei of the solvent and it also contains the solute-electrolyte interactions related to the averag...
	There are different approaches to treat the term ,,A.-𝑑𝑖𝑒𝑙.. The first approximation consists of treating only the solute quantum mechanically; in this way, the average densities of the solvent nuclei are obtained from a formalism based on classic...
	Continuous Solvent Model. The effects of the solvent can be treated explicitly, implicitly or in a combination of both.  In the case of treating them explicitly, a detailed description of the solvent needs the inclusion of several of its molecules in ...
	The Polarizable Continuum Model (PCM). This model comprises simplified theories that consider the interactions between the solute and the liquid by placing the electronic system immersed in a continuous dielectric without structure, simulating solvati...
	In the context of the JDFT, the solvent model can be defined by approximating the free energy functional of the solvated electronic system as follows:
	where ,A-HKM.,ρ,𝐫.. is the Hohenberg-Kohn-Mermin functional[29,30] of the solute depending on the electron density, ,Φ-liq.,,,ρ-α.,𝐫... is the exact free energy functional of the liquid that depends on the average densities of the solvent nuclei, an...
	One can rewrite this functional to distinguish the different contributions:
	where ,𝐴-ε.,,s-cav.,𝐫.,𝜀,𝐫.. represents the free energy functional  that captures the dielectric response corresponding to the electrostatic interaction of a fluid composed of neutral molecules, while ,𝐴-κ.,,s-cav.,𝐫.,,,ρ-α.,𝐫... represents the...
	The PCM model, in its linear response approximation, considers the effects of ionic and dielectric responses of the liquid to be linear and local, so that the dipole moment of the solvent molecule, ,ρ-mol., interacting with the total electrostatic pot...
	with the corresponding bound charge density,
	where 𝜅=,4π,,N-i..,Z-i-2./T. is the inverse of the Debye screening length in vacuum.
	The Euler-Lagrange equation for this functional, when simplified under linear response conditions with respect to the independent variable ϕ,𝐫., resembles the modified Poisson-Boltzmann equation, (or alternatively, the Helmholtz equation in scenarios...
	Finally, taking the solution to the electrostatic potential from this last equation and making substitutions, we get the equilibrium value of the ,A-diel. functional in the linear response limit,
	Therefore, under this approximation, ,A-𝑑𝑖𝑒𝑙. is a functional of the total electrostatic potential and the cavity shape function. In general terms, the above description corresponds to a PCM that includes the effects of an electrolyte. The inclusi...
	CANDLE model. One of the most successful PCM models used in the context of the GCDFT theory applied to electrochemistry problems is called CANDLE. This solvent model has the capability to describe the solvation energy for positive and negative charged...
	The CANDLE model builds upon the SALSA[31] solvation model (Spherically Averaged Liquid Susceptibility), with some modifications to the definition of the cavity shape function and the dispersion contribution. In the case of CANDLE the cavity shape fun...
	where ,𝜌.,𝒓. is the convolution of the electron density of the solute, ρ,𝐫. , and a spherical model of the molecular electron density of the solvent,
	,𝑍-𝑣𝑎𝑙. is the number of electrons of the solvent molecule and ,𝜎-𝑙𝑖𝑞. is adjusted so that the width of the gaussian function is related to the effective van der Waals radius of the solvent molecule. The quantity ,𝜌-𝑐-𝑒𝑓𝑓. depends on the...
	The cavity shape function described above is used directly to evaluate the dispersion contribution to solute-solvent interaction according to the equation:
	where ,𝐶-6𝑖. and ,𝑅-0𝑖. are the parameters of the DFT-D2 method of Grimme[59] for the ith atom of the solute at position ,𝐑-𝐢., and ,𝑓-𝑑𝑚𝑝. is the short-range damping function. ,𝑁-𝑏𝑢𝑙𝑘. is the bulk number density of the solvent. To repr...
	For the evaluation of the dielectric and ions response, it is defined a dielectric shape function that is modulated by a sort of effective electrostatic radius, 𝜂 , by using a convolution:
	The rationale of this change in the shape function is that the ions have a different average distance to the solute than the van der Waals interactions. Thus 𝜂 becomes an adjustable parameter in CANDLE model. This imply that ,𝑠-𝜀-′.,𝒓. substitutes...
	In CANDLE, the contribution of cavitation is expressed by
	where 𝑝 and 𝑇 are the pressure and temperature of the fluid with 𝛾≡,ln-,,𝑁-𝑏𝑢𝑙𝑘.𝑇-,𝑝-𝑣𝑎𝑝...−1, and ,𝑝-𝑣𝑎𝑝. the vapor pressure of the solvent. In this model, the term ,𝑠.,𝐫.=,,𝑤-𝑣𝑑𝑊.∗,s-cav..,𝐫. is a convolution of the cavity sh...
	The presence of ionic screening, 𝑘≠0, eliminates the indeterminacy of ϕ,𝐫. by an additive constant, establishing an absolute reference. It can be proven that the electrostatic potential decays to zero exponentially within the fluid far from the elec...
	Quantum capacitance and softness of N-doped graphene within GCDFT
	In recent years graphene has been found to be a very promising capacitor due to its properties such as high surface area, high electrical conductivity, low resistance, high mechanical strength, and chemical stability. Despite the efforts of researcher...
	According to the Gouy-Chapman-Stern model,[64] the capacitance of the electrolyte component of a solid-electrolyte interface can be divided into the Helmholtz (,𝐶-𝐻.) layer and the diffuse (,𝐶-𝐷𝑓.) layer contributions (See Fig. 4). To simplify ma...
	The quantum capacitance is conventionally derived from the rigid-band (RB) approximation:
	where 𝑔,𝐸. and ,𝐸-𝑓-𝑜. are the density of states and the Fermi level of the neutral electrode, respectively. Δ,𝐸-𝑓. is the shift in the Fermi level of the charged electrode resulting from the variation of the total change in the electrochemical...
	It is important to notice that in series capacitors a change in the charge is replicated in each capacitor, therefore, the inverse of total capacitance can be split in contributions coming from each part of the total change in 𝜇. In Zhan and Jiang’s ...
	that can be evaluated from a GCKS calculation of the solid-liquid interface using JDFT formalism.
	The relation of the inverse of capacitance with a DFT response quantity, chemical hardness, was pointed out as earlier as 1988 by Perdew[67]; and this idea was further developed by others. [68,69] In addition, in 1985 Yang and Parr, using the GCDFT fo...
	Since the total capacitance is the derivative of the electrode charge, 𝑒,,<𝑁.>−,<𝑁.,>-0.. with respect to chemical potential, it can be converted into a derivative with respect to the applied potential, U, through the expression 𝜇=,𝜇-0.−𝑒𝑈:
	The rationale for this transformation is that the applied potential fixes the chemical potential of the electrons indicating that the electrode used to fix the potential acts as the electrons bath at a certain imposed chemical potential. Ochoa-Calle a...
	They obtained that the rigid band approximation tends to overestimate quantum capacitance, especially in the pyridinic system, thereby reducing its impact on the total capacitance. With the model of series capacitors, they analyzed individually the  ,...
	They compared the total capacitance of the three systems studied in their work (see Fig. 6), where they obtain that the pyridinic system has the greatest ,𝐶-𝑇., establishing the relative order as pyridinic bond type > graphitic bond type > graphene ...
	Fig. 4. Schematic representation of an electric double layer with green and blue spheres indicating solvated cation and anion, respectively.
	Fig. 5. N-doped structures with 0 %, 3.1 % and 9.7 % relative concentrations for (a) graphene, (b) graphitic bond type and (c) pyridinic bond type, respectively.
	Fig. 6.  Total capacitance of the three different N-doped models as a function of the applied chemical potential, 𝜑, referred to the chemical potential of zero charge, ,𝜑-𝑃𝑍𝐶.. Pristine graphene is also included as a point of reference.
	Electronic structure and redox properties of metallic oxides as a function of the chemical potential
	The advanced electrochemical oxidation processes (EAOPs)[77] are based on the generation of hydroxyl radicals, which exhibit high oxidative power and are capable of completely oxidizing organic contaminants to carbon dioxide and water. It is convenien...
	EAOP mechanism proposed by Comninellis[78] in acidic medium has as its first step the oxidation of water to form adsorbed hydroxyl radicals on the surface, according to the half reaction:
	where M denotes the metallic site on the anode surface. The theoretical study of Comninellis mechanism initiated at UAMI group focused on determining surface reactions including the adsorption energies but using surface models in which the solvent was...
	These three surfaces have diverse electronic behaviors. The density of states (DOS) of the slab models provides valuable understanding of the electronic properties of these metal oxides with two explicit water molecules. Specifically, it reveals that ...
	At fixed geometry, Islas-Vargas et al. performed single point calculations employing GCDFT, fixing 𝜇 around the ,𝜇-𝑧𝑐. of each slab model. They evaluated the difference between the average number of electrons and the number of electrons of the neu...
	All chemical potentials are expressed as relative values, denoted as 𝜇−,𝜇-𝑆𝐻𝐸., where ,𝜇-𝑆𝐻𝐸. represents the energy value of the standard hydrogen electrode (SHE) relative to the vacuum level, which serves as the reference; in the case of CAN...
	Upon examining the alterations in the DOS at applied 𝜇 (Fig. 11), two significant changes in the electronic structure of these materials become apparent: a shift of the entire DOS and its deformation. In the metallic systems, PbO2 and IrO2 (Fig. 11(a...
	Islas-Vargas and colleagues[83] also investigated the chemical reactivity of these surfaces once an OH molecule was adsorbed, since these are the entities responsible for oxidizing organic molecules (R):[84]
	They performed electronic structure calculations at fixed geometry using JDFT formalism and CANDLE as the implicit solvation model. Once optimized, they made single point calculations of the surfaces with an OH molecule at fixed 𝜇. The curve ,𝑁.−,𝑁...
	To understand the regions involved in charge transfer during chemical potential changes they evaluated the local softness, 𝑆(𝐫).
	They found that in the case of the “non active” materials when the applied 𝜇 exceeds the ,𝜇-𝑧𝑐., the local softness is predominantly located over the adsorbed OH molecule and the two oxygen atoms in the bridge position. As 𝜇 rises, there is an in...
	Absolute qualitative redox scale. Theoretically, it is possible to split the total redox process and to study only one half-reaction:
	where m and 𝜈 are integers with 𝜈> 0. Thus, in order to evaluate the oxidizing power of an electrode in relation to a particular electrochemical reaction, Islas-Vargas and colleagues[83] proposed a scale for the relative ordering of these surface ma...
	In the scheme proposed by Islas-Vargas et al.,[83] the equilibrium geometries of electronic systems in their respective ground states are employed. This enables calculations with fixed geometry while varying the chemical potential within the electroch...
	plotting the ,<𝑁.> as a function of 𝜇 and fitting this behavior to the function 𝑓,𝑥.=,,1+,𝑒-−𝑎,𝑥−𝑏...-−1. as shown in Fig. 13. The calculated value of the reduction potential for 𝑂𝐻/𝑂,𝐻-−. is -1.42 eV, which deviates 480 meV from the exper...
	and
	where 𝑀,𝑂𝐻.,<𝑁.>, 𝑀,𝑂𝐻.,<𝑁+1.,>-−. and 𝑀,𝑂𝐻.,<𝑁−1.,>-+. are the states of the metallic oxide surface with an OH molecule with N, N+1 and N-1 electrons, respectively. As in the 𝑂𝐻/𝑂,𝐻-−. case, they fitted the data of the ,<𝑁.>−,𝑁-0.=...
	Table 1. Oxidation potential (,𝜖-𝑜𝑥.) and reduction potential (,𝜖-𝑟𝑒𝑑.) referred to the standard hydrogen electrode, in eV, for the MO2(OH) (where M = Pb, Sn, Ir) determined by two methods, I: interpolating the curves of ,𝑁.−,𝑁-0.=𝑓,𝜇. in t...
	Fig. 7. Schematic representation of the (110) MO2 surface, where M = Pb, Sn, and Ir, with adsorbed dissociated water molecules. I unsaturated M atom where OH is adsorbed, II oxygen in bridge position, III H atom bound to the O atoms in bridge position...
	Fig. 8. Top view of the slab models with two explicit water molecules after geometry optimization with the CANDLE implicit solvation model and 1M of electrolyte, (a) PbO2, (b) SnO2 and (c) IrO2. Solid black lines delimit the unit cell.
	Fig. 9. Density of states per unit cell of the metal oxide surface models with two dissociated water molecules. The solid orange line and the dotted brown line represent the potential of zero charge (,𝜇-𝑧𝑐.) and the Fermi level (,𝐸-𝑓.) of each sl...
	Fig. 10. (a) Average number of electrons difference, ,𝑁.−,𝑁-0., at applied chemical potential in eV, where ,𝑁-0. is the number of electrons of the neutral system and (b) Softness in a.u. as a function of applied chemical potential, for the MO2 (wit...
	Fig. 11.  Density of states per unit cell of the (a) PbO2, (b) SnO2 and (c) IrO2 slab model with two explicit dissociated water molecules at applied chemical potential (𝜇) in eV. The orange solid line, dotted red line, and dotted brown line indicate ...
	Fig. 12. (a) Average number of electrons difference, ,𝑁.−,𝑁-0. , at applied chemical potential in eV, where ,𝑁-0. is the number of electrons of the neutral system and (b) Softness in a.u. as a function of applied chemical potential, for the MO2 sla...
	Fig. 13. Average number of electrons difference, ,𝑁.−,𝑁-0. , at applied chemical potential (𝜇), in eV, where ,𝑁-0. is the number of electrons of 𝑂𝐻. Solid yellow line is the fitted function 𝑓,𝑥.=,,1+,𝑒-−𝑎,𝑥−𝑏...-−1. with a = 118.529 and b ...
	Conclusions
	This review is focused on a significant area of research: the application of electronic structure calculations and reactivity concepts within DFT to analyze electrochemical processes. In particular, it was shown that the use of local softness as a pro...
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