Aliskiren Copper(II) Complex. Synthesis and Antioxidant Activity

Nadir Jori¹, María Soledad Islas^{1,2*}, Evelina Gloria Ferrer¹, Patricia Ana María Williams^{1*}

¹Centro de Química Inorgánica (CEQUINOR-CONICET-CICPBA-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Boulevard 120 Nº 1465, C.C.962- (B1900AVV) -1900 La Plata, Argentina. ²Departamento de Química y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Argentina.

***Corresponding author:** María Soledad Islas, email: <u>msislas@mdp.edu.ar</u>, Tel. +54(0223)475-2200; Patricia Ana María Williams, email: <u>williams@quimica.unlp.edu.ar</u>, Tel. +54(0221)445-4393.

Received Febrarury 22nd, 2023; Accepted May 20th, 2023.

DOI for the article: http://dx.doi.org/10.29356/jmcs.v68i2.1981

Supplementary Information

J. Mex. Chem. Soc. 2024, 68(2) Regular Issue ©2024, Sociedad Química de México ISSN-e 2594-0317

Fig. S1. FTIR spectra of Aliskiren base (Alk base, in black), Aliskiren hemifumarate (Alk hfum, in blue) and Aliskiren copper(II) complex (CuAlk, in red). The dotted squares show main differences among compounds.

Fig. S2. UV-vis spectra of an ethanolic solution 0.0125 M of CuAlk at 0 (blue) and 120 min (black) and reflectance diffuse spectra of solid CuAlk (red).

Fig. S3. FTMS spectrum of CuAlk (2 mM) in ethanolic solution. Ionization voltage +1.4 kV, gas pressure 0.30 psi, temperature 120°C. Inset: main peek assignation. L= Alk (C₃₀H₅₃N₃O₆).

Fig. S4. Experimental FTMS spectrum of CuAlk (2 mM) in ethanolic solution, calculated spectrum for CuL_2^+ adduct and CuL_2H-1^+ adduct in 1164-1170 m/z range. Ionization voltage +1.4 kV, gas pressure 0.30 psi, temperature 120°C. Table: main fragment assignment. L= Alk ($C_{30}H_{53}N_3O_6$).

Fig. S5. Spectrophotometric determinations of CuAlk complex stoichiometry at 644 nm by the molar ratio method. Inset: UV–vis spectra of Alk base (0.002 M) with the addition of $Cu(NO_3)_2$ ·3H₂O in ligand-to-metal ratios (L/M) from 10.0 to 0.70 (pH 7.5) in ethanol. The arrow indicates increased metal additions.

Fig. S6. Scavenging of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH[•]) by Alk (red), CuAlk (black), and copper(II) (blue). The values are expressed as the mean \pm standard error of at least three independent experiments.

Fig. S7. Scavenge of peroxyl radicals measured as the decay of the intensity of pyranine by addition of different concentrations of Alk (left) and CuAlk (right) at different concentrations.

Fig. S8. Effect of CuAlk (in black), Alk (in red) and Cu(II) (in blue) ²⁶ on the reduction of nitroblue tetrazolium by non-enzymatically generated superoxide (phenazine methosulfate and reduced nicotinamide adenine dinucleotide system).

g-factor Fig. S9. Experimental Band-X EPR of solid CuAlk at 293 K (black) and at 120 K (red).

Fig. S10. ¹H NMR in d₆-DMSO of CuAlk and Alk base.

Fig. S11. ¹³C NMR in d₆-DMSO of CuAlk and Alk base.